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Abstract 

The dissociation constant (pKa) of acids is one of the most widely used physicochemical parameters, both 

in industry and in fundamental research. It allows to understand numerous chemical and biological 

phenomena such as polymer formation, adsorption, metabolism, distribution and biological transport. 

Several methods can be used to determine pKa values. This study was carried out using QSPR 

(Quantitative Structure-Property Relationship) modelling. Each model was developed from a series of 

sets of three quantum descriptors, calculated in the gaseous state at the B3LYP level with the LANL2DZ 

basis set, using multiple linear regression. The descriptors are the energies of the EHOMO (energy of the 

highest occupied molecular orbital) and ELUMO (energy of the lowest unoccupied molecular orbital) 

orbitals, the dipole moment, and the energy gap ΔE (energy difference between EHOMO and ELUMO). 

Indeed, based on experimental pKa values for benzoic, fluoro-benzoic, chloro-benzoic and bromo-

benzoic acids and their isomers, four reliable, efficient and robust QSPR models were developed to 

theoretically predict the pKa values of these acids in aqueous solution. In addition to their high predictive 

power for theoretical pKa values, these models offer the possibility of explaining the chemical 

phenomena that accompany the dissociation reaction of these acids, in which the solvent plays an 

important role. 

 

Keywords: Dissociation constant, quantum descriptors, QSPR modelling 

 

1. Introduction 

Carboxylic acids and their derivatives are used in the composition of several commonly used 

products such as medicines, food additives, cosmetics and plastics, as well as in organic and 

biological synthesis [1]. The physico-chemical property that characterises the dissociation state 

of these acids in solution is the dissociation constant, denoted pKa. It plays a fundamental role 

in solvent extraction and purification processes [2, 3], in acid-base titrations [4], in complex 

formation [5] and even in ion transport [6]. It also allows to evaluate chemical and biological 

phenomena such as absorption, distribution, metabolism, elimination, toxicity, and solubility 

of compounds in biological cells [4]. Numerous experimental methods are used to determine 

pKa values, including potentiometry [7], spectrophotometry [8], liquid chromatography [9], 

conductimetry [10], and capillary electrophoresis [11]. Not only these experimental 

determinations of pKa values are complex and onerous, but the values obtained are often 

associated with high uncertainties. These uncertainties in the pKa values are also affected by 

the experimental method used, temperature control, solvent composition and the stability of 

the chemicals used [12]. Considering the above, research methods are oriented towards 

predicting the physicochemical properties of new molecules. Among these methods is QSPR 

modelling (Quantitative Structure-Property Relationship) [13, 14]. In QSPR models, a 

mathematical relationship is established between the physicochemical properties and the 

molecular structure of chemical or biochemical compounds. Once established, these models 

will allow to develop of new theories or to explain observed phenomena and to predict the 

physicochemical properties of compounds for which experimental data are not available. They 

are based on the characterisation of molecules by a set of descriptors measured or calculated 

from molecular structures. Few studies on predicting the pKa values of benzoic acid and  
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its derivatives exist in the scientific literature. This study will 

consist of to develop QSPR models for the prediction of 

acidity constant values of benzoic acid and three of its 

derivatives (fluorobenzoic acid and isomers, chlorobenzoic 

acid and isomers, bromobenzoic acid and isomers) from 

quantum descriptors determined by Density Functional 

Theory (DFT). DFT is a quantum chemistry calculation 

method that uses electron density as a variable. The general 

aim of this work is to develop four QSPR models by 

establishing multilinear correlations between experimental 

pKa values and three quantum descriptors. 

 

2. Materials and methods 

2.1 Materials  

The material used in this study includes a Lenovo Thinkpad T 

490 laptop with a 512 GB SSD hard drive and 16 GB DDR4 

RAM.  

Gaussian 09 software, specialised in optimising molecular 

structures and obtaining quantum molecular descriptors, was 

used. 

The GaussView 6 module integrated into Gaussian 09 allows 

to construct 3D structures of molecules. 

Microsoft Excel 2016 was used to develop the models.  

The molecules studied are benzoic acid, fluoro-benzoic acid, 

chloro-benzoic acid, bromo-benzoic acid, and their isomers. 

 

2.2. QSPR modelling method  

In QSPR modelling, similarities between molecules are 

sought in a large database of known properties of existing 

molecules. Its purpose is to guide the synthesis of new 

molecules without having to produce them. Above all, it 

enables the analysis of entire families of chemical compounds 

whose properties are known [15]. 

 

2.2.1 Principle of QSPR methods  

The principle of QSPR methods is to establish a mathematical 

relationship that quantitatively links descriptors from 

molecular structures with a physicochemical property for a 

series of similar chemical compounds using statistical data 

analysis methods. The general formula for QSPR models is: 

 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 𝑓(𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠)  (1)  

  
The aim of QSPR models is therefore to analyse data derived 
from molecular structures in order to identify the factors that 
determine the measured property. Various modelling tools can 
be used for this purpose. The most used are simple linear 
regression (SLR) and multiple linear regression (MLR) [16, 17]. 
There are also partial least squares regression (PLS) [18], 
decision trees [19], neural networks [20] and genetic algorithms 
[21]. In this work, multiple linear regression was used. In 
practice, the model begins with the collection of experimental 
databases (pKa values), which must be numerous. Then, we 
look for a series of quantum descriptors characteristic of the 
structure of the compounds in the database in order to link 
them to the experimental property studied. Finally, data 
analysis tools are used to help choose the appropriate 
descriptors and develop the model itself. When established 
and validated on a validation set, the model can then be used 
to predict the property of new molecules for which 
experimental values are not available or for molecules that 
have not yet been synthesised. The most widely used QSPR 
model validation tools are:  

 The coefficient of determination, denoted R². It evaluates 
the proportion of variance explained by the model [22]. 
The value of R² is between 0 and 1. When it is close to 1 

(ideal case), the predicted and experimental values are 
strongly correlated. However, a low R² value indicates 
that the model has low predictive power and that the 
descriptors have no effect on the response. 

 The mean absolute error (MAE) is another statistical 
indicator [23]. However, standard deviation (SD) is 
preferred. These parameters allow the dispersion of the 
calculated properties relative to the experimental 
properties to be estimated. 

 The Fisher F-index. It measures the degree of statistical 
significance of the model, i.e. the quality of the choice of 
parameters.  

 
Methodology for computing quantum descriptors 
To determine the descriptors derived from the molecular 
structures of benzoic acid, fluorobenzoic acid, chlorobenzoic 
acid, bromobenzoic acid and their isomers, quantum 
chemistry calculations are performed using a computer. We 
create a 3D graphical representation of the molecule using 
Gauss View 6 software while performing pre-optimisation. 
Then the structure of the molecule is optimised using density 
functional theory implemented in the Gaussian 09W software 
[24]. Molecular structure optimisation is performed using the 
B3LYP hybrid functional [25] with the LANL2DZ pseudo-
potential orbital basis. After optimising the structure, it is 
possible to access descriptors that help to understand the 
electronic structure of the chemical system. In this work, all 
descriptors are calculated in the gaseous state. These 
descriptors are the energy of the highest occupied molecular 
orbital (EHOMO), the energy of the lowest unoccupied 
molecular orbital (ELUMO) and the dipole moment (µ). 
 
3. Results  
3.1 Analysis of descriptors  
The geometries of benzoic acid molecules and their 
derivatives are optimised using the LANL2DZ basis set at the 
B3LYP functional level. They are all shown in Figure 1. 
These optimised structures are used to obtain molecular 
descriptors from data extracted from calculations performed 
with Gaussian 09W [24]. These descriptors are the energies of 
the frontier orbitals (EHOMO and ELUMO) and the dipole 
moment (μ). We have an additional descriptor derived from 
the combination of the energies of the frontier orbitals. This is 
the LUMO-HOMO energy gap (Δ𝐸 = 𝐸𝐿𝑈𝑀𝑂 − 𝐸𝐻𝑂𝑀𝑂). The 
latter is a descriptor indicating the global electronic stability 
of the molecule. A lower ∆E suggests that the molecule is 
more polarizable and therefore potentially more reactive. The 
dipole moment reflects the global electronic distribution of 
the molecule. EHOMO and ELUMO energies are respectively 
related to the ionisation energy and electron affinity of the 
molecule. The values of the acid descriptors studied are 
grouped together in Table 1. We note that the values of EHOMO 
and ELUMO energies, which also represent the energies of the 
electronic states of the most stable geometric structures of 
molecules, are all negative. In general, the energy values of 
LUMO orbitals are higher than those of HOMO orbitals. This 
leads to a positive energy gap (Δ𝐸 = 𝐸𝐿𝑈𝑀𝑂 − 𝐸𝐻𝑂𝑀𝑂). Table 
1 also contains the experimental pKa values of the acids 
studied. Some values, notably those for benzoic acid and 
ortho-halobenzoic acid isomers, are taken from our previous 
work [26]. However, the values for other acids are taken from 
the literature [27].  
 

3.2 Development of QSPR models  

In establishing QSPR models, molecular descriptors (xi) are 

linearly related to a response variable (y) according to the 

mathematical relationship: 
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𝑦 = 𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯  (2) 

 

The constants αi are unknowns of the models, also called 

regression coefficients, and the objective of regression 

analysis is to estimate them. A series of sets of three 

descriptors were used to develop a model. We were able to 

establish four models based on the experimental pKa values 

of benzoic, fluorobenzoic, chlorobenzoic and bromobenzoic 

acids and a series of combinations of values for three 

descriptors from Table 1. The equations of the four QSPR 

models developed have the general formula: 

 

𝑝𝐾𝑎 = 𝐴𝑋1 + 𝐵𝑋2 + 𝐶𝑋3 + 𝐷  (3) 

 

𝑋1 , 𝑋2 , 𝑋3 are the descriptors contained in table 1. 𝐴 , 𝐵, 𝐶 et 

𝐷 are unknowns that will be determined by multilinear 

regression using Microsoft Excel 2016 software installed on a 

Lenovo Thinkpad T490 computer. The equations of the four 

QSPR models developed and their validation tools are 

represented in table 2. 

 

 
 

Fig 1: Optimised structures of acid molecules (B3LYP/LANL2DZ)
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Table 1: Molecular descriptor values and experimental pKa values of the acids studied [26, 27] 
 

Names of acids µ (D) EHOMO (ev) ELUMO (ev) ∆E (ev) pKa 

Benzoic acid 2,5996 -7,3630 -1,8577 5,5052 4,19 

Ortho-fluorobenzoic acid 3,0649 -7,4914 -2,1126 5,3788 3,27 

Ortho-chlorobenzoic acid 2,8409 -7,3124 -2,1180 5,1943 2,90 

Ortho-bromobenzoic acid 2,5766 -7,1011 -2,1074 4,9936 2,85 

Metha-fluorobenzoic acid 1,4144 -7,4976 -2,2124 5,2852 2,85 

Meta-chlorobenzoic acid 1,4107 -7,3646 -2,2165 5,1481 3,84 

Meta-bromobenzoic acid 1,4492 -7,1718 -2,1822 4,9895 3,81 

Para-fluorobenzoic acid 1,5470 -7,5703 -2,0737 5,4965 4,15 

Para-chlorobenzoic acid 1,5486 -7,4372 -2,1615 5,2757 4 

Para-bromobenzoic acid 1,5918 -7,2482 - 2,1479 5,1002 3,96 

 
Table 2: Different models developed 

 

The Models Model equations R2 SD F 

Model 1 (EHOMO, ELUMO, µ) 𝑝𝐾𝑎 = −0,2649𝐸𝐻𝑂𝑀𝑂 + 1,3036𝐸𝐿𝑈𝑀𝑂 − 0,1773𝜇 + 5,1221 0,998 0,019 5285,62 

Model 2 (EHOMO, ΔE, µ) 𝑝𝐾𝑎 = 1,0418𝐸𝐻𝑂𝑀𝑂 + 1,306𝛥𝐸 − 0,1779𝜇 + 5,1334 0,997 0,035 1287,15 

Model 3 (ELUMO, ΔE, µ) 𝑝𝐾𝑎 = 1,0393𝐸𝐿𝑈𝑀𝑂 + 0,2647𝛥𝐸 − 0,1774𝜇 + 5,1244 0,997 0,023 2832,16 

Model 4 (EHOMO, ELUMO, ΔE) 𝑝𝐾𝑎 = −363,7584𝐸𝐻𝑂𝑀𝑂 + 363,3255𝐸𝐿𝑈𝑀𝑂 − 363,3102𝛥𝐸 + 1,9970 0,997 0,023 3667,61 

 

4. Discussion 

In Table 2, all models show: 

 Correlation coefficients 𝑅2 tending towards 1 (𝑅2 >
0,99) 

 High Fisher's index values (𝐹 > 100)  

 Low standard deviation values (𝑆𝐷 < 0,05) 

 

In Figure 2, the correlation between the calculated pKa values 

and the experimental pKa values is also represented for each 

model.  

From the validation tool values, we can say that in all four 

models, there is a strong correlation between the calculated 

pKa values of the ten benzoic acids and each set of three 

molecular descriptors calculated in the gas phase at the 

B3LYP/LANL2DZ level. Also, as shown in figure 2, the 

values of the acidity constants obtained with the different 

models are identical to the experimental pKa values. In 

addition, these different models, which show good 

correlations (R² > 0.99; SD < 0.1) are robust. These QSPR 

models, with three quantum descriptors, as developed could 

be used to predict theoretically the values of acid constants for 

numerous other derivatives of benzoic acids in a reliable 

manner [28].  

In models (1, 2, 3) developed, the dipole moment coefficients 

are negative. Therefore, an increase in dipole moment values 

would lead to a decrease in pKa values. The dipole moment 

therefore contributes efficiently and at any time to the 

dissociation of the benzoic acids studied. The importance of 

the dipole moment in the prediction of pKa values is due to 

the fact that the molecules of these acids are highly polarised 

by the presence of the hydroxyl group (O-H). In contact with 

the water solvent, these molecules will easily dissociate, 

liberating the hydrogen atom H [28].  

Unlike the dipole moment, the regression coefficients of the 

LUMO energies are positive (models 1, 3, 4). This indicates 

that the dissociation of the acids studied is strongly influenced 

by the values of these LUMO energies. In fact, negative 

ELUMO values (Table 1) also lead to a decrease in pKa values. 

The energies of the LUMO orbitals therefore contribute to the 

dissociation of benzoic acids. 
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Fig 2: Correlations between calculated pKa values and experimental pKa values 
 

In the prediction of pKa values by model 1, the contribution of 
LUMO energies to acid dissociation, modulated by the dipole 
moment, is slightly attenuated by the presence of HOMO 
energies. Substituting LUMO energies with ΔE in model 1 
leads to model 2, in which HOMO energies and dipole 
moment contribute to acid dissociation. However, ΔE 
introduced in model 2 has an antagonistic effect on the 
dissociation. Model 3 is also obtained from Model 1 by 
substituting ΔE by the descriptor EHOMO. While the LUMO 
energies and dipole moment facilitate acid dissociation, ΔE 
slightly opposes it. Models 2 and 3 not only have the same 
predictive power, but their descriptors contribute by the 
identical manner to the dissociation of acids.  
Finally, in the prediction of pKa values by model 4, the 

contribution of LUMO orbital energies to the dissociation of 

carboxylic acids is compensated by the presence of HOMO 

orbital energies. Only ΔE contributes to dissociation. 

In all the different models developed, the dipole moment and 

LUMO orbital energies contribute to the dissociation of acids 

in solutions. On the other hand, depending on the model, 

descriptors such as HOMO energies and ΔE can contribute to 

the phenomenon of acid dissociation on the one hand and 

oppose it on the other. To conclude, we have developed four 

models that can effectively and reliably predict the theoretical 

pKa values of benzoic acid and its derivatives considered in 

this study. These models were developed based on 

experimental pKa values collected in our previous work [26] 

and in the literature [27] for a series of ten benzoic acids with 

three quantum descriptors calculated in the gaseous state at 

the B3LYP level using the LANL2DZ basis set. The 

mathematical tool used is multiple linear regression.  

However, the study has some insufficiencies due to the 

limited number of benzoic acid molecules. We will then 

propose to extend the modelling to a numerous number of 

benzoic acid molecules, while considering the molecules of 

the aqueous solvent in the descriptor calculations.  

 

5. Conclusion  

Benzoic acid and its derivatives are used in the formulation of 

many widely used products including medicines, food 

additives, cosmetics and plastics, as well as in various organic 

and biological synthesis. The dissociation constant of these 

acids plays a fundamental role in several analytical 

procedures such as extractions and solvent purifications, acid-

base titrations, complex formation and in ion transport. Based 

on experimental pKa values for benzoic, fluoro-benzoic, 

chloro-benzoic and bromo-benzoic acids and their isomers, 

four reliable, efficient and robust QSPR models were 

developed to theoretically predict the pKa values of these 

acids in aqueous solution. Each model was developed from a 

series of sets of three quantum descriptors calculated in the 

gaseous state at the B3LYP level with the LANL2DZ basis 

set using multiple linear regression. The descriptors are the 

HOMO and LUMO orbital energies, the dipole moment, and 

the energy gap ΔE. With, (𝑅2 > 0,99), 𝐹 > 100 et (𝑆𝐷 <
0,05), all models obtained have a high predictive power for 

pKa values. They also help explain the chemical phenomena 

that accompany the dissociation reaction of these acids, in 

which the solvent plays an important role.  

However, the study presents some limitations due to the small 

number of benzoic acid derivatives considered. We therefore 

propose to extend the modelling to a larger set of benzoic acid 

molecules, while explicitly including aqueous solvent 

molecules in the descriptor calculations. In addition, quantum 

calculations will be performed using several exchange-

correlation functionals (B3PW91, B3LYP, O3LYP, and 

PBEO) and different orbital basis sets to improve the 

predictive performance of the QSPR models. 
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