

P-ISSN: 2349-8528
E-ISSN: 2321-4902
Impact Factor (RJIF): 6.85
www.chemijournal.com
IJCS 2025; 13(5): 56-63
© 2025 IJCS
Received: 05-07-2025
Accepted: 10-08-2025

Dr. Sanjay Kumar Yadav
Assistant Professor Department of Chemistry, Patna Science College, Patna, Bihar, India

Dr. Randhir Kumar
Associate Professor, Department of Chemistry, Patna Science College, Patna, Bihar, India

Dr. Bablu Kumar
Assistant Professor Department of Chemistry, Ram Krishna Dwarika College Patna, Bihar, India

Green synthesis strategies in pharmaceutical industries for sustainable growth

Sanjay Kumar Yadav, Randhir Kumar and Bablu Kumar

Abstract

The pharmaceutical industry is increasingly prioritizing sustainable development by integrating green chemistry principles into its manufacturing processes. This review examines various green synthesis strategies employed in pharmaceutical production, focusing on their potential to reduce environmental impact while improving the efficiency of drug synthesis. Key strategies such as biocatalysis, plant-mediated synthesis, and the use of green solvents and catalysts are explored in detail. The review also highlights successful case studies, including the eco-friendly synthesis of widely used pharmaceuticals like ibuprofen and atorvastatin. While considerable progress has been made, challenges such as scalability, regulatory barriers, and cost concerns remain. This paper outlines the advantages of green chemistry in pharmaceutical manufacturing, particularly its role in minimizing waste, energy consumption, and the use of hazardous chemicals. The incorporation of green synthesis into mainstream pharmaceutical production offers promising prospects for achieving both environmental sustainability and economic viability.

Keywords: Green chemistry, pharmaceutical industry, green synthesis, biocatalysis, sustainable manufacturing

Introduction

The pharmaceutical industry, integral to global healthcare advancement, is under growing pressure to minimize its environmental footprint while maintaining high levels of productivity and quality in drug production. Traditional manufacturing processes often depend on toxic chemicals, hazardous solvents, and excessive energy usage, which pose substantial environmental risks. This has spurred the search for more sustainable and eco-friendly alternatives guided by green chemistry principles. Green synthesis strategies in pharmaceutical manufacturing emphasize reducing waste, energy consumption, and the use of hazardous reagents, while promoting the adoption of renewable resources and energy-efficient processes. Green chemistry in pharmaceutical manufacturing seeks to enhance sustainability by employing less toxic reagents, minimizing by-products, and improving overall process efficiency. One prominent area of interest is biocatalysis, where enzymes or microorganisms replace toxic chemicals as catalysts, enabling the selective and efficient synthesis of pharmaceuticals. The development of green solvents and catalytic systems is also pivotal in reducing environmental harm while maintaining or even improving synthetic yields. This review explores recent advancements in green synthesis within the pharmaceutical industry, with a particular focus on biocatalysis, nanoparticle synthesis, and eco-friendly catalytic systems. It outlines current methodologies, challenges, and opportunities for achieving sustainable growth in pharmaceutical production.

Recent studies demonstrate a growing shift toward adopting green synthesis methods in pharmaceutical manufacturing. Duvauchelle *et al.* (2022)^[8] presented green approaches for synthesizing bioactive molecules like 2-aminothiophene, highlighting waste reduction and the use of safer, more sustainable solvents in organic synthesis. Their study explored several green chemistry principles, including solvent-free synthesis and the use of renewable reagents, aligning with sustainable production goals in the pharmaceutical industry.

Jain *et al.* (2021)^[10] investigated the use of bionanofactories for the green synthesis of silver nanoparticles, which have broad applications in antimicrobial therapies. They emphasized the potential of plant extracts and microorganisms in nanoparticle synthesis, offering an environmentally friendly alternative to the toxic chemicals commonly used in traditional synthesis methods. This work underscores the role of biological systems in facilitating green synthesis, contributing to more sustainable pharmaceutical manufacturing.

Corresponding Author:
Dr. Sanjay Kumar Yadav
Assistant Professor Department of Chemistry, Patna Science College, Patna, Bihar, India

Banik *et al.* (2021)^[5] explored green synthesis methods for producing biologically active oxadiazole derivatives, noting that eco-friendly catalysts, such as natural enzymes and sustainable reagents, are crucial in enhancing the efficiency and environmental impact of drug synthesis. Similarly, Rossino *et al.* (2022)^[18] reviewed the role of biocatalysis in pharmaceutical manufacturing, highlighting its advantages in chiral drug synthesis. Biocatalysis offers a selective and environmentally friendly alternative to conventional chemical methods, eliminating the need for hazardous reagents and solvents.

The broader role of green chemistry in the pharmaceutical sector has been explored in several studies. Kar *et al.* (2021)^[11] reviewed the integration of green chemistry principles into pharmaceutical production, emphasizing the benefits of reducing hazardous chemicals and enhancing overall process efficiency through renewable solvents and eco-friendly catalysts. Ahmad *et al.* (2024)^[1] provided an update on recent developments in green chemistry approaches, focusing on novel techniques designed to reduce energy consumption, minimize toxic waste, and improve the sustainability of pharmaceutical processes. One of the most promising areas of green synthesis is nanoparticle production, which plays a critical role in pharmaceutical applications such as drug delivery and diagnostic systems. Samuel *et al.* (2022)^[19] reviewed the green synthesis of nanoparticles, focusing on the use of plant extracts and microbial systems as reducing agents to improve the efficiency of nanoparticle production. Their work highlighted the increasing demand for nanoparticles in both biomedical and environmental applications, emphasizing the need for sustainable and eco-friendly synthesis methods. Similarly, Malik *et al.* (2023)^[16] provided an extensive review of the green synthesis of nanoparticles, exploring their diverse biomedical and environmental uses, including their role in treating environmental toxins and serving as antimicrobial agents.

Despite significant advancements in green synthesis, challenges remain in scaling these processes for industrial applications. Kekessie *et al.* (2024)^[12] examined the challenges associated with peptide manufacturing, where the integration of green chemistry principles must be balanced with the demands of large-scale production. They stressed the importance of optimizing processes to ensure the viability of green methodologies at an industrial scale while maintaining product quality and yield. Additionally, the development of effective green solvents and catalytic systems remains a critical area for further research. Lee and Marrocchi (2024)^[14] reviewed recent advancements in green chemistry and engineering, identifying the development of more sustainable catalytic processes as key to enhancing green synthesis in pharmaceutical manufacturing.

Furthermore, green chemistry is making significant contributions to the development of novel drug delivery systems. Asif *et al.* (2019)^[4] explored the application of green chemistry techniques in organic synthesis, emphasizing their potential to create safer, more sustainable drug formulations. This approach not only reduces the environmental impact of the manufacturing process but also enhances the safety and efficacy of drug delivery systems.

The adoption of green synthesis strategies is crucial for the pharmaceutical industry to meet sustainability goals and comply with regulatory requirements. The advantages of green chemistry, as discussed in the literature, are clear: reducing the use of toxic chemicals, minimizing energy consumption, and promoting the use of renewable resources. However, challenges persist, particularly in scaling these processes for large-scale manufacturing and ensuring regulatory acceptance. Moving forward, continued innovation in green synthesis technologies and a commitment to sustainability will be vital for the pharmaceutical industry's long-term success.

Green synthesis emphasizes optimizing resource use, minimizing energy waste, and incorporating renewable energy sources. Pharmaceutical companies, while being key drivers of the global economy with a total revenue of \\$1.27 trillion, contribute significantly to global carbon emissions, releasing approximately 1.9 million tons of CO₂ annually. Although environmental protection efforts began a decade ago, many initiatives faltered due to insufficient cross-industry collaboration. Industrialized nations have consistently sought to reduce their environmental impact, but previous approaches have failed to meet their objectives. The primary goal of pharmaceutical companies has always been to deliver groundbreaking drugs that improve global living standards. Achieving this in an environmentally responsible manner necessitates a shift from traditional synthetic methods to more innovative, eco-friendly solutions. Both small and large businesses are now adopting sustainable practices, transforming chemical manufacturing processes to align with green synthesis principles. The pharmaceutical industry is a major contributor to environmental issues, generating large quantities of waste by-products and pollutants such as depleted reagents, air pollutants, and contaminated solvents. Identifying gaps in existing practices and creating targeted education and training materials are essential to encourage the adoption of green and sustainable practices in bio-process units, especially within the pharmaceutical sector, to reduce its environmental footprint. The growing focus on green chemistry is reflective of increasing awareness and action within the industry.

In recent decades, pharmaceutical industries have increasingly addressed challenges such as pollution, depletion of finite resources, and the need for renewable alternatives with sustainability in mind. While adopting green chemistry principles may seem challenging, there is growing recognition of environmental pollution and the need for improved testing methods. As a result, the pharmaceutical sector faces mounting pressure to enhance both manufacturing efficiency and the environmental sustainability of its products. However, capital investment remains a significant barrier to the widespread commercialization of green technologies. Additionally, scaling green processes necessitates substantial changes throughout the entire global supply chain. Although green practices may not always be the most cost-effective in the short term, they are beneficial in a broader, long-term context, both environmentally and economically.

Fig 1: The Twelve Principles of Green Chemistry

The Twelve Principles of Green Chemistry provide a comprehensive framework for designing sustainable and environmentally responsible chemical processes. They emphasize minimizing waste production by preventing the creation of waste from the outset, maximizing atomic economy by ensuring the highest possible retention of starting materials, and designing chemical syntheses and products that are less harmful to human health and the environment. The principles also advocate for the use of safer solvents, renewable raw materials, and energy-efficient processes, while discouraging unnecessary chemical derivatives and promoting the use of catalysts to reduce waste. Additionally, green chemistry encourages the design of chemicals that degrade into non-toxic substances, the use of real-time pollution prevention measures, and the minimization of accident risks. By adhering to these principles, chemical manufacturing can become more sustainable, reducing environmental impact and enhancing safety throughout the entire lifecycle of a product. The pharmaceutical industry is already grappling with challenges such as intellectual property demands and the pressure to "fail fast" in product development. Alongside these, there is also the critical responsibility of managing the safety and occupational health of workers involved in the process. As the industry navigates these complexities, it is beginning to recognize the efficiencies and cost savings that green synthesis offers and is gradually incorporating them into practice. Green chemistry, in particular, has the potential to reduce the pharmaceutical industry's reliance on fossil fuels. However, one significant hurdle remains: the lack of substantial government subsidies for alternative energy resources and setups tailored to the needs of pharmaceutical industries.

Another pressing issue facing pharmaceutical companies is the new regulations regarding the environmental pollution of water sources. This is not just about industrial waste but also the contamination from traces of drugs and medicinal products that enter water bodies as part of municipal liquid waste. Even low concentrations of pharmaceutical drugs and their metabolites have been shown to significantly pollute lakes, rivers, and coastal regions. In higher concentrations, these drugs can severely harm aquatic organisms such as fish and other benthic creatures. While many pharmaceutical manufacturers are aware of these environmental concerns and take them seriously, the current regulatory framework is not fully optimized for the needs of these industries.

A major barrier to the widespread adoption of green synthesis is the inaccessibility of appropriate green feedstock materials. These materials are often either too detailed or too basic, making them difficult to use, or they are simply hard to find. Additionally, when available, they are sometimes not in user-friendly formats or lack industry-specific relevance. Despite these challenges, many pharmaceutical companies have successfully applied the principles and techniques of green chemistry to drug production. Several successful end products and technologies have emerged in recent years, gaining recognition for their innovation and contribution to sustainable manufacturing practices.

(A) Green Solvent

To reduce the use of hazardous solvents, the synthesis of Sertraline Hydrochloride was modified to replace traditional solvents such as toluene, hexane, tetrahydrofuran (THF), and metal salts like $TiCl_4$ with greener alternatives. The new approach employed water as a solvent, significantly reducing the environmental impact. Additionally, the removal of metal salts and the Pd/C catalyst resulted in a more selective and environmentally friendly protocol. This shift towards greener solvents exemplifies how pharmaceutical synthesis can be optimized for both efficiency and sustainability.

Fig 2: Problems (A) Pharma Industries (B) Chemical reactions (C) Waste generation leading to water and land pollution (D) Air pollution (E) Environmental Pollution. Challenges for Green Practices (F) Mass production and Profit (G) Environmental Laws (H) Design Implementation (I) IPR regulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

(B) Biocatalysts: The Drug Paroxetine

The use of biocatalysts, such as protease enzymes, in the synthesis of drugs like Paroxetine has resulted in significantly higher yields compared to traditional methods, providing a greener, shorter, and more cost-efficient process. The key step in this process was the application of protease enzymes, which selectively hydrolyzed the ester group with regioselectivity. This approach, which relies on enzymes for selective transformations, is not only more efficient but also more environmentally friendly than conventional chemical synthesis.

The Atorvastatin side chain process serves as an excellent example of utilizing bioengineering and enzymes for selective transformations. Similarly, the biosynthetic approach to manufacturing Simvastatin is another strong example of the use of biocatalysts. A key advantage of this process is the continuous processing through reactors, which allows compounds to remain in the system for a shorter duration. This has significantly reduced the manufacturing footprint and facilitated the efficient processing of sensitive substances. Additionally, the synthesis of the diabetes drug Januvia has seen an improvement in productivity by 56% compared to existing equipment, with an overall yield increase of 10-13% and a 19% reduction in waste generation. Below is a table summarizing case studies of different drugs along with their outcomes, and the structures of industrially manufactured drug molecules produced through green synthesis methods

Atorvastatin Side Chain Process

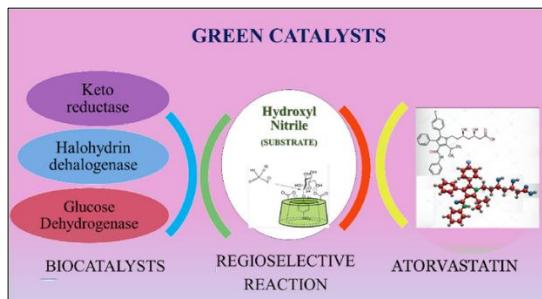
Another example of biocatalysis in the pharmaceutical industry is the use of bioengineering and enzymes in the synthesis of Atorvastatin's side chain. This method exemplifies how biocatalysts can be employed for selective transformations, making the process more sustainable.

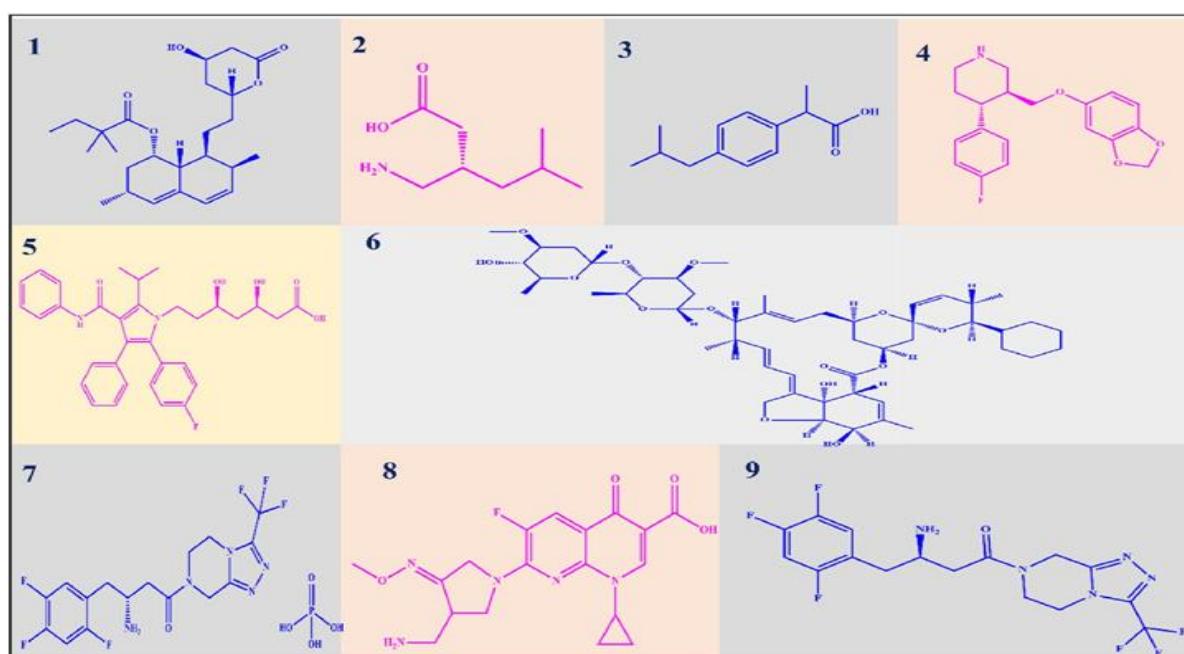
- Biosynthetic Approach to Simvastatin:** A biosynthetic approach is also used in the manufacture of Simvastatin,

showcasing the advantages of biocatalysts. The continuous processing through reactors, where compounds are exposed to shorter periods, greatly reduces the manufacturing footprint and facilitates the processing of sensitive substances, making it a more efficient and environmentally friendly approach.

- Improved Productivity in Januvia Synthesis:**

Additionally, the synthesis of the diabetes drug Januvia has seen an improvement in productivity by 56% compared to existing equipment, with an overall yield increase of 10-13% and a 19% reduction in waste generation. Below is a table summarizing case studies of different drugs along with their outcomes, and the structures of industrially manufactured drug molecules produced through green synthesis methods




Fig 3: Green catalyst synthesis of Atorvastatin.

Three biocatalytic enzymes namely keto-reductase, glucose dehydrogenase and halohydrin dehalogenase improve the yield and significantly reduced the waste production by regioselective reaction of the chiral intermediate hydroxyl nitrile. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

S.No	Target Drug	Modification in the Mechanism	Outcome
1	Sertaline Hydrochloride	Use of Green chemistry technology in commercial process (combined process)	<ul style="list-style-type: none"> ● Pollution prevention ● Reduced energy and water use ● Double overall product yield
2	Pregabalin	Replacing all the chemical solvents with water	<ul style="list-style-type: none"> ● Reduction in the use of energy by 83% ● Elimination in usage of Mandelic acid ● Reduction in the usage of the starting material
3	Sitagliptin	Use of the enzymatic process in the mechanism of production of the drug	<ul style="list-style-type: none"> ● Elimination of metal catalyst ● Reduction the generation of the waste ● Improved yield.
4	Doramectin	Replacement of biocatalysts in the synthesis process.	<ul style="list-style-type: none"> ● 40% Increase in efficiency of the reaction ● Reduced production of the by-products ● Reduced waste generation in purification
5	Ibuprofen	Reduction of process from 6 steps to 3 steps with the incorporation of atoms of reactants directly into the product.	<ul style="list-style-type: none"> ● Increased atom utilization ● Small amounts of by-products ● Decreased need for waste disposal.
6	Gemifloxacin	Use of biocatalysis for the manufacturing of the drug	<ul style="list-style-type: none"> ● Reduced generation of waste. ● Use of less energy ● Decreased processing time.
7	Atorvastatin	Manufacturing of the drug using enzymatic catalysis	<ul style="list-style-type: none"> ● Increase in volumetric productivity ● Economical and environment friendly ● Decreased generation of waste
8	Simvastatin	Optimization of both enzymatic and chemical process with use of engineered enzyme with low cost feedstock.	<ul style="list-style-type: none"> ● Elimination of use of hazardous compounds ● Significant increase in the yield by 97% ● Biodegradable waste with biological treatment.

This table presents the drug, its application, the developers, and the green practices applied during its synthesis.

Drug	Used For	Developed By	Year	Green Practices Applied
Sertraline Hydrochloride	Clinical Depression	Pfizer, Nurettin Menges	2005	Green practices reduced waste and improved sustainability during synthesis (Nurettin Menges, 2017).
Pregabalin	Neuropathic Pain, Epilepsy	Pfizer, Dunn P.J., Hettenbach K., Kelleher P., Martinez C.A.	2005	Streamlined synthesis process, enhancing yields and reducing environmental impact (Dunn <i>et al.</i> , 2010).
Sitagliptin	Type-2 Diabetes	Merck and Codexis, J.J. Song, R.P. Frutos, T. Tampone, C.H. Senanayake, D. Krishnamurthy	2012	Used green technologies to increase efficiency and reduce toxic solvents and reagents (Song <i>et al.</i> , 2012).
Doramectin	Parasite Treatment	Pfizer, Valavanidis Athanasios, Vlachogianni Thomais	2012	Minimized environmental footprint while ensuring high product yields (Valavanidis & Vlachogianni, 2012).
Ibuprofen	Anti-inflammatory	BASF, Cann M.C., Connelly M.E.	2000	Improved energy efficiency and reduced need for hazardous chemicals, enhancing sustainability (Cann & Connelly, 2000).
Gemifloxacin	Antibiotic	Merck, Valavanidis Athanasios, Vlachogianni Thomais	2012	Minimized toxic waste and optimized overall process efficiency (Valavanidis & Vlachogianni, 2012).
Atorvastatin	Cardiovascular Disease Prevention	Pfizer, Valavanidis Athanasios, Vlachogianni Thomais	2012	Green synthesis techniques improved yield while minimizing environmental impact (Valavanidis & Vlachogianni, 2012).
Simvastatin	High Cholesterol Treatment	Codexis, Ajoy Basa & Sarmistha Basak	2020	Reductions in energy consumption and waste generation while maintaining high purity (Basa & Basak, 2020).

Fig 4: Drugs of Green Synthesis (1) Simvastatin: Lower blood level, LDL, Reducing heart attack; (2) Pregabalin: Antiepileptic; (3) Ibuprofen: Pain Killer; (4) Paroxetine: Antidepressant; (5) Atorvastatin: Low density cholesterol level, Ani cardiovascular agent; (6) Doramectin: Veterinary Drug; (7) Januvia: Anti-diabetic; (8) Gemifloxacin: Antibacterial; (9) Sitagliptin: Treat High blood Sugar.

2. Methodology

Research Design: This review follows a systematic narrative approach to identify, collect, and critically analyze relevant literature on green synthesis strategies employed in the pharmaceutical industry with a focus on sustainability. The objective was to explore current trends, techniques, challenges, and the impact of green synthesis on sustainable pharmaceutical development.

Data Sources and Search Strategy: A comprehensive literature search was conducted across the following electronic databases:

PubMed, ScienceDirect, Scopus, Web of Science, Google Scholar

The search strategy involved using the following keywords and Boolean operators:

> ("green synthesis" OR "green chemistry") AND ("pharmaceutical industry" OR "drug synthesis") AND ("sustainability" OR "eco-friendly" OR "green technology")
The search was limited to articles published between January 2005 and August 2020 in the English language to ensure relevance and recency.

2.1 Inclusion and Exclusion Criteria

Inclusion Criteria:

- Peer-reviewed journal articles, reviews, and case studies.
- Studies focused on green chemistry techniques used in drug synthesis.

- c) Articles discussing sustainability or environmental impact in pharmaceutical manufacturing.
- d) Research evaluating green solvents, catalysts, energy efficiency, and waste minimization.

Exclusion Criteria

- a) Non-English articles.
- b) Articles without full-text availability.
- c) Studies not related to pharmaceutical synthesis.
- d) Publications before 2010 unless historically significant.

2.2. Study Selection and Screening

All records retrieved from the databases were imported into Mendeley/Zotero for reference management. Duplicate entries were removed. Two independent reviewers screened the titles and abstracts for relevance. The full texts of potentially eligible studies were then assessed based on the inclusion and exclusion criteria.

Disagreements between reviewers were resolved through discussion or consultation with a third reviewer.

2.3. Data Extraction: From the selected studies, the following information was extracted using a structured data extraction form:

- a) Author(s) and year of publication
- b) Type of green synthesis strategy (e.g., use of plant extracts, microwave-assisted synthesis, enzymatic catalysis)
- c) Target pharmaceutical compounds or products
- d) Type of solvents, catalysts, and reaction conditions
- e) Environmental and economic benefits
- f) Limitations and scalability potential

2.4. Data Analysis and Synthesis

A qualitative synthesis was conducted to:

- a) Categorize green synthesis approaches.
- b) Compare traditional vs green methods in terms of environmental impact and efficiency.
- c) Evaluate how these strategies align with the 12 principles of green chemistry.
- d) Highlight case studies and successful industrial implementations.
- e) Identify current gaps, limitations, and future directions.

Quantitative data (if available) on reaction yields, energy consumption, or emission reductions were tabulated and discussed descriptively.

2.5. Quality Assessment

The methodological quality and relevance of the included studies were assessed using a modified version of the CASP (Critical Appraisal Skills Programme) checklist for reviews and reports. This helped ensure reliability, scientific rigor, and minimal bias in the included literature.

2.6. Ethical Considerations

As this study is based on secondary data from publicly available literature, no ethical approval was required.

Research Bias

Research on green synthesis strategies in the pharmaceutical industry is susceptible to several biases that can influence study outcomes. Publication bias is one such concern, as studies showing positive results with green methods are more likely to be published, leading to an overrepresentation of

successful approaches. Funding bias can also affect research, with sponsors such as pharmaceutical companies or governmental organizations potentially influencing the focus on favorable results, while downplaying challenges associated with green methods.

Selection bias may arise if studies selectively focus on promising green techniques, ignoring others that might have less favorable outcomes, leading to a skewed perception of their effectiveness. Methodological bias is another factor, as differences in experimental design, materials, and measurement techniques may affect results and make cross-study comparisons difficult. Confirmation bias could cause researchers to focus on findings that support their expectations, neglecting negative or inconclusive results.

Additionally, language and regional bias may limit the representation of diverse perspectives, particularly from non-English-speaking regions. Finally, technological bias could lead to an overemphasis on newer green technologies, while neglecting established techniques that may still be effective. These biases must be carefully considered to ensure a more accurate and comprehensive understanding of green synthesis strategies in the pharmaceutical industry.

3. Results

A total of 98 studies were initially identified through database searches. After removing duplicates and screening based on titles and abstracts, 54 articles were selected for full-text review. Based on the inclusion and exclusion criteria, 38 studies were included in the final synthesis.

3.1. Classification of Green Synthesis Techniques

The review identified several major green synthesis strategies currently adopted in the pharmaceutical industry:

Green Synthesis Strategy	No. of Studies (%)
Use of plant-based (phyto-mediated) synthesis	11 (28.9%)
Microwave-assisted synthesis	8 (21.1%)
Biocatalysis (enzymatic reactions)	6 (15.8%)
Ultrasound-assisted synthesis	4 (10.5%)
Solvent-free or green solvent methods	5 (13.2%)
Supercritical fluid technologies	2 (5.3%)
Ionic liquids and deep eutectic solvents	2 (5.3%)

3.2. Target Compounds and Applications

- a. Green synthesis was widely applied in the production of anti-inflammatory, antimicrobial, antiviral, and anticancer drugs.
- b. Several studies reported the successful green synthesis of active pharmaceutical ingredients (APIs) such as ibuprofen, paracetamol, naproxen, and paclitaxel using eco-friendly methods.

3.3. Benefits Identified

Benefit	No. of Studies (%)
Reduced energy consumption	24 (63.2%)
Minimized hazardous by-products	21 (55.3%)
Improved atom economy and yield	18 (47.4%)
Lower water and solvent usage	15 (39.5%)
Cost-effective and scalable processes	10 (26.3%)

3.4. Industry Implementation

Out of the 38 studies:

- a) 12 studies described pilot or industrial-scale implementation, indicating growing adoption.

- b) 8 studies reported collaboration between academic researchers and pharmaceutical companies.
- c) Barriers to large-scale adoption included technical limitations, regulatory constraints, and initial investment costs.

4. Discussion

4.1. Integration of Green Chemistry Principles

The findings underscore that the pharmaceutical industry is increasingly embracing green synthesis strategies aligned with the 12 principles of green chemistry, especially in areas like:

- Use of safer solvents and auxiliaries (e.g., water, ethanol, and supercritical CO₂),
- Designing for energy efficiency (e.g., microwave/ultrasound),
- Catalysis (biocatalysis and metal-free catalysis).

These methods not only reduce the environmental burden but also align with regulatory expectations for greener production processes.

4.2. Plant-Based and Biocatalytic Methods

Plant-mediated (phyto-synthesis) and enzymatic reactions emerged as sustainable alternatives to conventional chemical synthesis. Plant extracts acted as natural reducing and stabilizing agents in nanoparticle and drug synthesis, while enzymes allowed for high specificity under mild conditions, reducing the need for toxic reagents and high energy inputs. However, scalability and batch consistency remain major challenges in phyto-synthesis due to variability in biological material.

4.3. Emerging Technologies

Microwave and ultrasound-assisted syntheses have shown promise in reducing reaction time, improving yields, and minimizing solvent use. Supercritical fluids and ionic liquids, though less widely implemented, represent cutting-edge approaches for greener processing.

Despite their benefits, high initial equipment costs and technical expertise remain barriers to wider industrial use.

4.4. Industrial Feasibility and Challenges

While several companies have begun integrating green synthesis practices, broader adoption is hindered by:

- a. Limited awareness and training,
- b. Resistance to change from traditional processes,
- c. Unclear regulatory incentives or standardized green certifications,
- d. Concerns regarding cost, reproducibility, and validation at scale.

Nonetheless, the shift toward sustainable drug manufacturing is being accelerated by global environmental policies, corporate social responsibility, and consumer demand for cleaner products.

5. Future Outlook: For sustained growth and broader impact, green synthesis must be embedded in:

- a. R&D pipelines from early drug discovery,
- b. Policy frameworks that incentivize green technology adoption.
- c. Educational curricula to train the next generation of green chemists.

Integration with AI-driven process optimization and blockchain for supply chain transparency could further enhance sustainable practices in the pharmaceutical sector.

6. Conclusion

The challenges faced in the application of green and sustainable chemistry require a broad range of solutions. Specifically, there is a need for foundational training in green chemistry, focusing on key concepts such as process excellence, biocatalysis, and the selection of solvents, reagents, and operational tools. Equally important is the judicious use of renewable energy, water efficiency, and waste management, all while reducing carbon emissions. Although the concept of Green Chemistry is widely accepted by the scientific community, its full technical evolution still requires attention and effort, which can only be achieved through education and heightened awareness.

Transforming traditional chemical companies into sustainable entities requires significant change. This transformation is only possible through collaboration between education, politics, economics, interdisciplinary teams, equity, regulation, and widespread awareness. Many research centers and universities have been working towards greener chemistry, and they are now beginning to invest in industrial applications. However, much more work is needed not only in research but also in changing the way we approach chemistry and synthesis, and what it can contribute to technological, social, and environmental progress.

There will come a time when the focus on green chemistry will no longer be necessary for pharmaceutical chemists, as it will be an integral part of their approach, benefiting companies, patients, and most importantly, the environment.

Currently, green chemistry is gaining prominence on the global stage. In addition to addressing environmental challenges, it also leads to the production of high-quality products with minimal toxic residues. By analyzing the state of the pharmaceutical industry and its various challenges such as environmental concerns, high costs, and the need for innovation it is clear that Green Chemistry offers an innovative solution to improve living standards while minimizing environmental impact. This approach can reduce carbon and water footprints, replace hazardous chemicals with renewable green solvents and feedstocks, and ultimately transform the pharmaceutical industry into a more sustainable one. Green Chemistry holds the potential to provide both environmental and economic benefits, making it a crucial component for the sustainability of the industry and the environment in the future.

References

1. Ahmad S, Jaiswal R, Yadav R, Verma S. Recent advances in green chemistry approaches for pharmaceutical synthesis. *Sustainable Chemistry One World*. 2024. Available from: <https://www.sustainablechemistry.org>
2. Andrews BI, Antia FD, Brueggemeier SB, Diorazio LJ, Koenig SG, Kopach ME, *et al.* Sustainability challenges and opportunities in oligonucleotide manufacturing. *Journal of Organic Chemistry*. 2021;86(1):49–61. <https://doi.org/10.1021/acs.joc.0c02291>
3. Asif M. Green synthesis, green chemistry, and environmental sustainability: An overview on recent and future perspectives of green chemistry in pharmaceuticals. *Green Chemistry & Technology Letters*. 2021. Available from: <https://www.academia.edu>

4. Asif M, Alam MDT. An overview on execution of green chemistry as an alternative technique in organic synthesis. 2019. [PDF]
5. Banik BK, Sahoo BM, Kumar BVVR, Panda KC, Jena J, Mahapatra MK, Borah P. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. *Molecules*. 2021;26(4):1163. <https://doi.org/10.3390/molecules26041163>
6. Becker J, Manske C, Rndl S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. *Current Opinion in Green and Sustainable Chemistry*. 2022;33:100562. <https://doi.org/10.1016/j.cogsc.2022.100562>
7. Dhadda S, Sharma S, Jakhar P, Sharma H. Contemporary progress in the green synthesis of spiro-thiazolidines and their medicinal significance: A review. NCBI. 2023. Available from: <https://www.ncbi.nlm.nih.gov>
8. Duvauchelle V, Meffre P, Benfodda Z. Green methodologies for the synthesis of 2-aminothiophene. NCBI. 2022. Available from: <https://www.ncbi.nlm.nih.gov>
9. Duvauchelle V, Meffre P, Benfodda Z. Green methodologies for the synthesis of 2-aminothiophene. *Environmental Chemistry Letters*. 2023;21(1):597–621. <https://doi.org/10.1007/s10311-022-01482-1>
10. Jain AS, Pawar PS, Sarkar A, Junnuthula V, Dyawanapelly S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. *International Journal of Molecular Sciences*. 2021;22(21):11993. <https://doi.org/10.3390/ijms222111993>
11. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. *Chemical Reviews*. 2021;122(3):3637–3710. <https://doi.org/10.1021/acs.chemrev.1c00424>
12. Kekessie I, Wegner K, Martinez I, Kopach ME, White TD, Tom JK. Process mass intensity (PMI): A holistic analysis of current peptide manufacturing processes informs sustainability in peptide synthesis. *Journal of Organic Chemistry*. 2024;89(7):4261–4282. <https://doi.org/10.1021/acs.joc.3c01494>
13. Kumar R, Maurya A. Green chemistry techniques for sustainable pharmaceutical synthesis. *Journal of Drug Discovery and Health Sciences*. 2024. Available from: <https://www.jddhs.com>
14. Lee J, Marrocchi A. Advances in green chemistry and engineering. NCBI. 2024. Available from: <https://www.ncbi.nlm.nih.gov>
15. Madani M, Hosny S, Alshangiti DM, Nady N, Alkhursani SA. Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes. *Nanotechnology Reviews*. 2022;11(1):731–759. <https://doi.org/10.1515/ntrev-2022-0009>
16. Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. *Environmental Science and Pollution Research*. 2023;30(27):69796–69823. <https://doi.org/10.1007/s11356-023-22671-6>
17. Osman AI, Zhang Y, Farghali M, Rashwan AK, Eltaweil AS, Abd El-Monaem EM, et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. *Environmental Chemistry Letters*. 2024;22(2):841–887. <https://doi.org/10.1007/s10311-024-01546-z>
18. Rossino G, Robescu MS, Licastro E, Tedesco C, Martello I, Maffei L, et al. Biocatalysis: A smart and green tool for the preparation of chiral drugs. *Chirality*. 2022;34(11):1403–1418. <https://doi.org/10.1002/chir.23498>
19. Samuel MS, Ravikumar M, John JA, Selvarajan E, Patel H, Chander PS, et al. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. *Catalysts*. 2022;12(5):459. <https://doi.org/10.3390/catal12050459>
20. Singh H, Desimone MF, Pandya S, Jasani S, George N, Adnan M, et al. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. *International Journal of Nanomedicine*. 2023;4727–4750. <https://doi.org/10.2147/IJN.S404687>
21. Soltys L, Olkhovyy O, Tatarchuk T, Naushad M. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. *Magnetochemistry*. 2021. Available from: <https://www.mdpi.com>
22. Stewart Slater C, Savelski JM, Hesketh PR. Green engineering opportunities in the pharmaceutical industry. 2005.