

P-ISSN: 2349-8528
E-ISSN: 2321-4902
www.chemijournal.com
IJCS 2023; 11(6): 42-45
© 2023 IJCS
Received: 02-10-2023
Accepted: 11-11-2023

Irshad Ali
Department of Chemistry, Patna University, Patna, Bihar, India

Ajmeri AA
Department of Chemistry, Faculty of Science, MSU Baroda, Vadodara, Gujarat, India

Faisal Farooq

Department of Chemistry, Patna University, Patna, Bihar, India

MD Khairul Wara
Department of Chemistry, Jai Prakash University, Chapra, Bihar, India

Rudhima Raj

Department of Chemistry, Ranchi University, Ranchi, Jharkhand, India

Corresponding Author:
Irshad Ali
Department of Chemistry, Patna University, Patna, Bihar, India

Synthesis, characterization and antifungal activity of complexes of $\mathbf{2 - (1 H - b e n z o t h i a z o l - 2 - y l) ~}$ thioacetic acid with some bivalent metal ions

Irshad Ali, Ajmeri AA, Faisal Farooq, MD Khairul Wara and Rudhima Raj

Abstract

Heterocyclic compounds, usually benzimidazole and benzothiazole derivatives, are essential for life system and extensively distributed in nature. Imidazole ring systems display a significant role in the metabolism of all living cells. Owing to the therapeutic properties of benzthiazole, we have prepared stable bis ligated complexes $\left[\mathrm{ML}_{2}\right] \mathrm{nH}_{2} \mathrm{O}[(\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Mn}(\mathrm{II}), \mathrm{Cu}(\mathrm{I}), \mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ involving benzthiazole moiety using potassium salt of $2-(1 \mathrm{H}-$ benzolthiazol-2-yl) thioacetic acid and studied their structures and magnetic susceptibility along with screening of their antifungal activity.

Keywords: Bivalent metal complexes, 2-(1H- benzolthiazol-2-yl) thioacetic acid, antifungal activity, magnetic susceptibility and electrical conductance

Introduction

Imidazole ring systems display a significant role in the metabolism of all living cells. Besides this, benzthiazole derivatives play an important role as therapeutic agents like antiviral, anticancer, antihelmintics, anticonvulsants, anti-inflammatory, analgesics, antiparasitics, antiulcer, antihypertensives, antifungal, anticoagulants ${ }^{[1-8]}$ etc.
Considering a wide range of applications of the benzthiazole derivatives, the metal complexes of a number of benzimidazole and benzothiazole derivatives have been reported in literature ${ }^{[9-}$ ${ }^{15]}$. Herewith we have prepared stable bis ligated complexes $\left[\mathrm{ML}_{2}\right] \mathrm{nH}_{2} \mathrm{O}[(\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$, Mn (II), Cu (I), Zn (II), or Cd (II) and $\mathrm{n}=\mathrm{o}, 2$ and 4)] involving benzthiazole moiety using potassium salt of 2-(1H- benzolthiazol-2-yl) thioacetic acid.

Scheme

Experimental Section: Materials and Methods

Purity of the compounds was checked by thin layer chromatography (TLC) on silica gel using ultraviolet light and/or iodine vapour as visualizing agents. Compounds were purified by column chromatography using silica gel column. Yields are quoted for recrystallized compounds. Elemental analysis was carried out on a Perkin-Elmer CHNS analyzer (Model-2400). Infrared spectra were recorded on a Perkin-Elmer-FTIR spectrophotometer (KBr discs). UV visible spectra were recorded using shimadzu UV-vis 160 Spectrophotometer at IIT Patna. The magnetic properties of the complexes were studied by Gouy method. Proton nuclear magnetic resonance spectra were recorded on a Bruker 400 MHz spectrophotometer.

Synthesis of 2-(1H-benzothiazole-2-yl) thioacetic acid

Potassium salts of a mixture of 2-mercaptobenzothiazole 1 (0.1 mole) and chloroacetic acid (0.1 mole) was refluxed for one hour at $50-60{ }^{\circ} \mathrm{C}$ and left overnight at room temperature.

Then the mixture was treated with aq. HCl . The residue obtained was filtered, dried, purified by column chromatography (petroleum ether) and recrystallized with ethanol.

Synthesis of complexes

5 milli mole of ethanolic solution of the suitable metal chloride $\left(\mathrm{Ni}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}\right)$ was slowly treated with an ethanolic solution of potassium salt of $2-(1 \mathrm{H}-$ benzothiazole-2-yl) thioacetic acid in 2:1 (ligand-metal) molar ratio. The resulting solution was refluxed for half an hour whereby the crystalline coloured precipitates of metal complexes separated slowly. The resulting solids were filtered, washed with distilled water and recrystallized from ethanol-acetone (50:50) mixture and dried in a desiccator over anhydrous CaCl_{2}.

Result and discussion
 Physical data for ligands and the complexes

Table 1: Analysis found (Calculated) \%

Compound	\mathbf{C}	\mathbf{H}	\mathbf{N}	\mathbf{S}	\mathbf{S}
$1, \mathrm{LH}$	$47.98(48.01)$	$3.80(3.11)$	$5.89(6.22)$	$28.23(28.44)$	
$2 \mathrm{a}, \mathrm{NiL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	$37.50(37.32)$	$3.18(3.45)$	$4.99(4.83)$	$21.98(22.11)$	$10.89(10.14)$
$2 \mathrm{Z}, \mathrm{ZnL}_{2}$	$41.90(42.07)$	$2.05(2.33)$	$5.05(5.45)$	$24.50(24.93)$	$12.50(12.73)$
$2 \mathrm{c}, \mathrm{CuL}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	$39.05(39.44)$	$2.80(2.92)$	$5.03(5.11)$	$23.10(23.37)$	$11.20(11.60)$
$2 \mathrm{~d}, \mathrm{CoL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	$37.10(37.31)$	$2.99(3.45)$	$4.60(4.83)$	$21.80(22.10)$	$9.80(10.17)$
$2 \mathrm{e}, \mathrm{CdL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	$38.10(38.54)$	$1.53(2.14)$	$4.10(4.99)$	$22.16(22.84)$	$19.68(20.05)$

From the result of elemental analysis it has been found that 2-(1-Hbenzimidazol-2-yl) thioacetic acid (LH) form bivalent metal complexes of compositions $\mathrm{ML}_{2} \mathrm{nH}_{2} \mathrm{O} 2 \mathrm{a}, 2 \mathrm{c}$ and 2 d $\left(\mathrm{M}=\mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}\right.$ and Co^{2+} respectively) and $\mathrm{ML}_{2} 2 \mathrm{~b}$ and $2 \mathrm{e}(\mathrm{M}=$ Zn^{2+} and Cd^{2+}).

Infrared spectra

Table 2: IR bands of 2-(1H-benzothiazol-2-yl) thioacetic acid and its complexes in cm^{-1}.

Compound	$\mathbf{v}(\mathbf{O H})$ of $\mathbf{(\mathbf { O O H }) \mathbf { o r }}$ $\mathbf{v (\mathbf { H } _ { 2 } \mathbf { O })}$	$\mathbf{v (C = O)}$	$\mathbf{v}(\mathbf{C}=\mathbf{N})$	$\mathbf{v (C - S}-$ $\mathbf{C})$	$\mathbf{v}(\mathbf{M - O})$ $\mathbf{c m}^{-}$
LH	3435 br	1710 str	1573 s	721 w	-
$\mathrm{NiL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	3350 br	1595 str	1575 s	705 w	446 m
$\mathrm{CuL}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	3360 br	1620 str	1580 s	690 w	412 m
ZnL_{2}	-	1595 str	1578 s	695 w	438 m
$\mathrm{CdL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	-	1590 str	1570 s	688 w	432 m
$\mathrm{CoL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	3320 br	1585 str	1576 s	697 w	442 m

$\mathrm{br}=$ broad, $\mathrm{str}=$ strong, $\mathrm{s}=$ sharp, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium

The ligand shows prominent bands at 3435, 1573 and $690 \mathrm{~cm}^{-}$ ${ }^{1}$ assignable to (COOH) hydroxyl (OH) groups stretching vibration, imidazole ring $v(\mathrm{C}=\mathrm{N})$ band and $v(\mathrm{C}-\mathrm{S}-\mathrm{C})$ of thio group respectively.
The IR band of $v(\mathrm{C}=\mathrm{O})$ of carboxyl group was observed at 1710 cm which shifted to lower frequency in complexes and observed in the range $1585-1620 \mathrm{~cm}^{-1}$. The large shift in v (CO) vibration on complexation is due to coordination of both carboxyl group (COO) oxygen to metal atoms and delocalization of (COO) group. The disappearance of $v(\mathrm{OH})$ band at $3435 \mathrm{~cm}^{-1}$ of ligand in complexes suggested the deprotonation of carboxyl group (COOH) proton and thus ligand (COO) is coordinating as monobasic bidentate group. In far infrared region the IR band between 412-446 cm ${ }^{-1}$ can tentatively be assigned to (M-O) stretching band. The $v(\mathrm{C}-\mathrm{S}-$ C) vibration of ligand is shifted to lower wave number, suggesting an environment sulfur in bond formation. The broad IR band in complexes between $3350-3320 \mathrm{~cm}^{-1}$ is attributed to $v(\mathrm{OH})$ of water group in $\mathrm{CuL}_{2} 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{CoL}_{2} 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NiL}_{2} 4 \mathrm{H}_{2} \mathrm{O}$.

UV spectra

Table 3: For 2-(1H-benzothiazol-2-yl) thioacetic acid and it complexes in DMSO solvent.

Compound	Colour	Absorption bands (nm)	Assigned transition
LH	Yellow	282301328223 and 252	$\pi \rightarrow \pi^{*} \sigma \rightarrow \sigma^{*}$
NiL2. $4 \mathrm{H}_{2} \mathrm{O}$	Pale green	281301460	$\pi \rightarrow \pi^{*}{ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}(\mathrm{~F})}$
$\mathrm{CuL}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	Green	290338610	$\pi \rightarrow \pi^{*}{ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \mathrm{r}^{2} \mathrm{~A}_{1 \mathrm{~g}}$
ZnL 2	Pale yellow	290301343	$\pi \rightarrow \pi^{*}$
$\mathrm{CdL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	White	280290300	$\pi \rightarrow \pi^{*}$
CoL2. $4 \mathrm{H}_{2} \mathrm{O}$	Light pink	280320480	$\pi \rightarrow \pi^{*}{ }^{4} \mathrm{~T}_{2 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~A}_{2 \mathrm{~g}}$

The electronic absorption spectra of complexes and ligands were recorded in DMSO. The strong electronic transition of ligands located at 223 and 252 nm is assigned to $\sigma-\sigma^{*}$ transition while bands at 282,301 and 328 nm can be assigned
to $\pi-\pi *$ of different groups present in ligands. These bands are slightly shifted to higher and lower wave lengths of coordination in metal complexes with enhanced intensity.

The ligand field electronic transition of the metal d-d bands were observed in $\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}$ and Cu^{2+} complexes in visible region. The UV band at 460 nm for $\mathrm{NiL}_{2} 4 \mathrm{H}_{2} 0$ is assigned to the transition ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ and band at 610 nm for $\mathrm{CuL}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ could be assigned to the ${ }^{2} \mathrm{~B}_{1 \mathrm{~g}} \rightarrow{ }^{2} \mathrm{~A}_{1 \mathrm{~g}}$ transition. The UV band at 480 nm observed in Co (1l) complexes $\mathrm{CoL} 2.4 \mathrm{H}_{2} \mathrm{O}$ can be assigned as ${ }^{4} \mathrm{~T}_{2 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~A}_{2 \mathrm{~g}}$ transition in octahedral field. As expected $\mathrm{Cd}^{2+1}\left(\mathrm{~d}^{10}\right)$ and $\mathrm{Zn}^{2+}\left(\mathrm{d}^{10}\right)$ complexes did not show dd transition due to filled d-orbital. The spectral characteristics of complexes are similar to reported distorted octahedral structure for $\mathrm{Co}^{2+}, \mathrm{NI}^{2+}$ and Cu^{2+} complexes.

Table 4: Magnetic movement conductivity measurement in DMF solvent

Compound	Conductivity Ohm $^{\mathbf{- 1}} \mathbf{m o l}^{\mathbf{- 1}} \mathbf{c m}^{\mathbf{2}}$	Magnetic moment in BM at $\mathbf{3 0 4} \mathbf{~ k}$
$\mathrm{NiL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	12	3.28
$\mathrm{CuL}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	16	1.89
$\mathrm{CoL}_{2} .42 \mathrm{O}$	13	4.86
$\mathrm{CdL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	15	Diamagnetic
ZnL_{2}	10	Diamagnetic

The experimental values of magnetic moment for each metal complex after making correction for pascal constant are listed in Table 4. The magnetic moment value 3.28 BM for $\mathrm{NiL}_{2} .4 \mathrm{H}_{2}$ at 304 k occurs in the range of a distorted octahedral environment. The magnetic moment values 1.89 BM observed for $\mathrm{CuL}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ and 486 BM at 304 k for $\mathrm{CoL}_{2} .4 \mathrm{H}_{2} \mathrm{O}$ also occur in the approximately distorted octahedral structure of these metal complexes. The magnetic moment values also supported the proposed structure of complexes. As expected CdL_{2} and ZnL_{2} are diamagnetic (d^{10}) electronic system. The molar conductance value in DMF at $30 \pm 0.5{ }^{\circ} \mathrm{C}$ were found in the range $10-16$ ohm $^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$ which indicated that complexes are non-electrolyte (Table 4).

Table 5: NMR Spectra

Compound	$\boldsymbol{\delta}(\mathbf{O H})$ $(\boldsymbol{\delta}-\mathbf{p p m})$	$\boldsymbol{\delta}\left(\mathbf{C H}_{\mathbf{2}}\right)$ aliphatic $\mathbf{(\boldsymbol { \delta } - \mathbf { p p m })}$	$\boldsymbol{\delta}(\mathbf{H})$ aromatic $(\boldsymbol{\delta}-\mathbf{p p m})$
CdL_{2}	-	$4.22 \mathrm{ppm}(\mathrm{s})$	$6.45-7.87(\mathrm{~m})$
ZnL_{2}	-	$4.24 \mathrm{ppm}(\mathrm{s})$	$6.35-7.94(\mathrm{~m})$
LH	12.22 S	$4.15 \mathrm{~S} \mathrm{ppm}(\mathrm{s})$	$7.35-8.12(\mathrm{~m})$

($\mathrm{s}=$ singlet, $\mathrm{m}=$ multiple)
Table 6: ${ }^{13} \mathrm{C}$ NMR spectra

Compound	C=O (${ }^{\mathbf{1 3}} \mathbf{C}$) ($\boldsymbol{\delta}-\mathbf{p p m})$	Aliphatic C ($\mathbf{\delta}-\mathbf{p p m})$	Aromatic C $(\boldsymbol{\delta}-\mathbf{p p m})$
$\mathrm{Zn}(\mathrm{L})_{2}$	159.61	29.48	$121.07-144.43$
$\mathrm{Cd}(\mathrm{L})_{2}$	159.64	28.58	$121.15-115.17$
$\mathrm{~L}_{\mathrm{H}}$	169.61	30.39	$121.22-114.2$

Observed changes in ${ }^{1} \mathrm{H}$ NMR signals are evidence of coordination due to the chemical shift. The ${ }^{1} \mathrm{H}$ NMR spectrum of Zn^{2+} and Cd^{2+} complexes shows the disappearance of the OH proton signal at (12.22 ppm) due to deprotonation of (OH) protons in complexes. The ${ }^{1} \mathrm{H}$ NMR signals of protons between $7.35-8.14 \mathrm{ppm}$ were assigned to aromatic ring protons and that shifted to a slightly higher field upon complexation. Similarly the H^{1} NMR signal of the $-\mathrm{CH}_{2}$ aliphatic group was shifted to a higher field (4.22-4.26 ppm). The ${ }^{13} \mathrm{C}$ NMR signals of the ligand and its complexes are presented in Table 6. The carboxyl group $(\mathrm{C}=\mathrm{O}){ }^{13} \mathrm{C}$ NMR signal of ligand was observed at 169.61 ppm which shifted down field position in the complexes ($158.46-159.61 \mathrm{ppm}$). The shift is due to the
decrease of electron density at the carbon atom when oxygen is bonded to the metal atom in Zn (II) and Cd (II) complexes.

Antifungal activity of ligand and complexes

Antifungal activity of ligand and its complexes were screened by using radial growth technique. The fungi Aspergillus nigar, Aspergillus flavus, Rhizoctonia, Candida albicans and Candida tropicalis were screened by cup and plate method at concentration of 100 ppm and 200 ppm in DMSO +ethanol (50%) medium using the standard Griscoflavin (10 ppm). The nutrient medium was prepared by dissolving 6 gram peptone, 3 gram yeast extract, 1.5 gram beef extract, 3.0 gram AgarAgar and 20 gram dextrose in one litre of double distilled water for bacterial growth. And for fungi screening, 10 gram peptone, 20.5 gram Agar-Agar and 20 gram dextrose in one liter of double distilled water was used. The organisms were examined under septic condition and incubated at $35^{\circ} \mathrm{C}$ for 40 hours. The radial growth was measured but it was found that no appreciable growth was seen for examined fungi.

Conclusion

The formation of stable bis ligated complexes $\left[\mathrm{ML}_{2}\right] \mathrm{nH}_{2} \mathrm{O}$ [(M=Co (II), Ni (II), Mn (II), Cu (I), Zn (II) and Cd (II) $\mathrm{n}=\mathrm{o}$, 2 or 4)] involving benzthiazole moiety using potassium salt of $2-(1 \mathrm{H}-\quad$ benzolthiazol-2-yl) thioacetic acid and their characterization was achieved successfully. On the basis of UV and magnetic moment values, the distorted octahedral geometry has been proposed for the $\mathrm{Cu}^{2+}, \mathrm{Ni}^{2+}$ and Co^{2+} complexes while tetrahedral geometry for Zn^{2+} and Cd^{2+} complexes. The screening of microbial studies observed for 100 ppm and 200 ppm concentrations showed no appreciable antifungal activity as was expected for the complexes in concerned.

Acknowledgement

The authors are thankful to Heads, Department of Chemistry, Patna University, Patna, Bihar, Department of Chemistry, Jai Prakash University, Chapra, Bihar and Department of Chemistry, Ranchi University, Ranchi, Jharkhand, India for providing necessary facilities. We are also thankful to Chemistry Department, IIT, Patna, Bihar for providing spectroscopic analysis, especially UV-IR, NMR and for carrying out Antibacterial activity.

References

1. Beckmann U, Brooker S. Coordination Chemistry Reviews. 2003;245:1729.
2. Squattrito PJ, Dubey SN. Inorganic Chemistry Acta. 1999;358:4511-4515.
3. Rahman A, Ferwanah S. Inorganic Chemistry Acta. 2005;358:4511-4518.
4. Bolos CA, Chavirar AT, Nourelatos D. Bioorganic \& Medicinal Chemistry. 2009;17:3142-3151.
5. Pal S, Das D, Sinha C. Inorganic Chemistry Acta. 2001;313:21-29.
6. Woolee G, Singh N, Jang OD. Tetrahedron Letters. 2008;49:1952-1956.
7. Xi NQ, Hung $\mathrm{Q}, \mathrm{Lu} \mathrm{L}$. Comparative Journal of Heterocyclic Chemistry. 2008;143-364.
8. Todd W, Kajda WK, Squattrito PJ, Dubey SN. Inorganic Chemistry Acta. 2000;300-3002:1082-1089.
9. Irshad A, Hussain N. Journal of Chemical, Biological, and Physical Sciences. 2016;7(1):206-210.
10. Irshad A. Journal of Chemical Science Transactions. 2015;4(4):1145-1148.
11. Irshad A, Shadique MA. Acta Ciencia Indica. 2017;XLIIIC:503-506.
12. Irshad A, Kumari J. Oriental Journal of Chemistry. 2010;26(4):1529-1532.
13. Irshad A, Khan SA. International Journal of Chemical and Pharmaceutical Sciences. 2014;2(12):1375-1379.
14. Geary WJ. Coordination Chemistry Reviews. 1971;7:81.
15. Feggis BN. Introduction to Ligand Fields. Wiley Eastern Ltd. 1976;279.
16. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. $6^{\text {th }}$ ed. John Wiley, New York. 1978;242-256.
17. Das MK, Nath M, Zuckermann JJ. Inorganic Chemistry Acta. 1983;21-49.
18. Nyholm RS, Figgis BN. Progress in Inorganic Chemistry. 1964;6:37-124.
