International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com IJCS 2023; 11(1): 108-130 © 2023 IJCS Received: 13-11-2022 Accepted: 19-12-2022

ML Sahu

Department of India Meteorological, Regional Meteorological Centre, Nagpur, Maharashtra, India

Latha Sridhar

Department of India Meteorological, Regional Meteorological Centre, Nagpur, Maharashtra, India

Albert N Minz

Department of India Meteorological, Regional Meteorological Centre, Nagpur, Maharashtra, India

Sulekha Sonal

Department of India Meteorological, Regional Meteorological Centre, Nagpur, Maharashtra, India

Corresponding Author: ML Sahu Department of India Meteorological, Regional Meteorological Centre, Nagpur, Maharashtra, India

Model and value added forecast verification analysis for rainfall and temperature for districts of Vidarbha

ML Sahu, Latha Sridhar, Albert N Minz and Sulekha Sonal

Abstract

For the benefit of farming community during various crop stages, district-wise Medium range weather forecast for the subsequent 5 days is disseminated to the DAMU (District Agromet advisory unit) and KVK (Krishi Vigyaan Kendra) every Tuesday and Friday for all the districts of Vidarbha by Regional Meteorological Centre, Nagpur. In this study, the verification of medium range weather forecasts (both GFS-T1534 model and value added) for districts of Vidarbha for the four seasons during the period 2021-2022 (SW Monsoon season 2021 to pre-monsoon season 2022) are discussed for temperature and rainfall. Rainfall forecast for almost all the districts revealed higher accuracy during post-monsoon to pre-monsoon and little less accuracy during the SW Monsoon season. However, the accuracy of value-added forecasts was higher than those of the model forecasts in all the seasons. The maximum and minimum temperature forecasts as compared to the model forecasts.

Keywords: Vidarbha, weather forecast, verification, rainfall, temperature

1. Introduction

India is an agrarian country and agricultural output is mainly dependent on weather and climatic conditions. Timely advice to the farmers about the weather conditions help them plan their sowing and take appropriate precautions during adverse weather conditions to save their crops from damages and minimize losses. As an important step to reach to the farming community at various districts across the country, IMD started issuing quantitative district level weather forecast upto 5 days from 1st June, 2008^[1, 2] for the preparation and dissemination of District Level Agromet Advisory Bulletins. The IMD GFS-T1534 model generates forecasts for weather parameters for the districts across India for various weather parameters, viz. maximum and minimum temperatures, rainfall, relative humidity, wind speed and direction and cloud cover. Based on the model outputs, prevalent synoptic conditions over the region and its neighbourhood, climatology of the region, products obtained from various other models, products obtained by Doppler Weather Radars and satellite imageries during the forecast day, suitable value additions are done for all these weather parameters for the subsequent 5 days. This information after value addition is further disseminated to the farmers by DAMU and KVK of the district on the various agronomic practices to be followed to increase crop production and to minimize the production losses in case of adverse weather conditions.

Vidarbha, a meteorological subdivision of India is in the eastern region of Maharashtra state and comprises of 11 districts, namely, Akola, Amravati, Bhandara, Buldhana, Chandrapur, Gadhchiroli, Gondia, Nagpur, Wardha, Washim and Yeotmal (Figure-1). Vidarbha region of Maharashtra state is not as much economically prosperous as compared to the rest of the state.

The economy of Vidarbha is largely dependent on agriculture. Medium range model based weather forecasts contribute largely in day-to-day agricultural operations and crop yield ^[3, 4].

However, value additions to these model based forecasts are effective towards planning the appropriate adjustments in daily agricultural practices in localized areas to improve both qualitative and quantitative agricultural productions. To improvise upon the quality of agromet advisories disseminated, it is necessary to verify the forecasts issued. ^[5] have studied the model based forecasts efficacy for rainfall for the entire country excluding Vidarbha region of Maharashtra. Not many studies in this regard have been done for Vidarbha region.

Hence in the present study, an attempt has been made to verify the 5-day forecasts for rainfall and temperature over the districts of Vidarbha and to compare the value added forecasts with the model based forecasts.

Fig 1: Vidarbha Region of Maharashtra

2. Materials and method

The values of rainfall and temperature as obtained by 5 day GFS-T1534 model forecast data output of every Tuesdays and Fridays, 5 day Value added forecast data output of every Tuesdays and Fridays, Observed Rainfall and Temperature (Maximum & Minimum) data over the study region for the study period for the districts of Vidarbha have been used for verification. The daily temperature and rainfall of the district has been computed by calculating the simple arithmetic average of the values obtained by the departmental and part-time observatories within the district. Forecast accuracy is a measure of how close it was to the weather that actually occurred. In this study, the number of days in the season when the forecast was close to the observed weather has been considered as the accuracy of the forecast (correct, usable and incorrect) on the basis of error structure as discussed by ^[5].

For rainfall

(A) The error Structure for verification of rainfall forecast: Correct Diff $\leq 25\%$ of observed

Usable 25% of observed < Diff \le

50% of observed

Unusable Diff > 50% of observed

(Diff is the absolute difference between observed and forecast rainfall)

Besides, various skill scores like (WMO Technical Circular No.- WMO/TO No.1023 Guidelines on Performance Assessment of Public Weather Services) have also been used to verify the forecast using the following formulae based on the matrix (2×2) given below:

Observed/Forecasted	Rainfall	No Rainfall
Rainfall	Α	В
No Rainfall	С	D

= Total no. of days – no. of missing days

A = No. of days when rain was forecasted and also observed B = No. of days when rain was forecasted but not observed C = No. of days when rain was not forecasted but observed D = No. of days when rain was not observed and also not forecasted

MAT = No. of matching cases (A + D)

RS = Skill Score or Ratio Score of rainfall

$$=\frac{MAT}{N}*100$$

HKS = Hanssen & Kuipers Score

$$=\frac{(AD-BC)}{((A+C)*(B+D))}$$

Range: -1 to +1 Perfect: 1 Advantage: equal emphasis to yes/no events

POD = Percentage of detection =
$$\frac{A}{(A+C)}$$

Range: 0 to 1 Perfect Score: 1

FAR = False alarm ratio =
$$\frac{B}{(A+B)}$$

CSI = Critical Success index = $\frac{A}{(A+B+C)}$

HSS = Heidke Skill Score

$$=\frac{2*(AD-BC)}{((A+C)*(C+D)*(A+B)*(B+D))}$$

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(f_i - o_i)^2}$$

Where

fi = value forecastedoi = value observed $\Sigma n = total observations$

For maximum & minimum temperatures

(B) The error structure considered for verification of temperature forecast:

Correct Diff ≤ 1 °C Usable 1 °C < Diff ≤ 2 °C

Unusable Diff > 2 °C

(Diff is the absolute difference between observed and forecast temperatures)

3. Results and discussion

The value addition forecasts and model based forecasts are generated for Rainfall and temperatures (Maximum & Minimum) for all the 11 districts of Vidarbha. Since Bhandara district doesn't yet have any departmental (IMDs) full time or part-time observatory, the verification analysis for these meteorological parameters could not be carried out for Bhandara. For the rest of the districts, the verification analysis and comparison between model based and value added forecasts have been carried out. The graphs for both Rainfall anf temperature show the qualitative efficacy of the model based and value added forecasts in terms of Correct+ Usability and Incorrect expressed in percentage. The first (second) bar in the figures (bar graphs) for each day indicates Model based (value added) forecast efficacy (Correct+ Usability). Similarly, the third (fourth) bar in the figures (bar graphs) for each day indicates Model based (value added) forecast inefficacy (Incorrect).

3.1 Verification Analysis for Rainfall

3.1.1 Verification of Rainfall for Akola

As seen from Table-1 and Figure-2, the qualitative forecast for rainfall during the SW monsoon season of the study period

was <60% for the model based forecasts, the value added forecast was observed to be >=60% for Days 3, 4 and 5. However, the qualitative efficacy of model based forecast was marginally better than that of the value added forecast for day 1. For Day 2, the qualitative forecast of model based was <40% while that of the value addition was about 50%. From Table-1, it can also be seen that the skill scores for all the 5 days were better for value added forecasts as compared with those of the model forecasts for SW Monsoon 2021. RMSE for all the 5 days w.r.t. value added forecast was much less than those of the model based forecasts, which shows that the value added forecasts were qualitatively better as compared to the model based forecasts. As seen from Table-1 and Figure-2, qualitative forecast for rainfall during the Post Monsoon season of 2021 were >80% for both model based and value added forecasts with value added forecast slightly better for all the 5 forecasted days. From Table-1, it can also be seen that the skill scores and RMSE for all the 5 days were better for value added forecasts for the Post Monsoon Season of 2021. As seen from Table-1 and Figure-2, qualitative forecast for rainfall during the winter season of 2022 were >80% for both model based and value added forecasts in terms of correct and usable forecasts. However, the qualitative efficacy of the value added forecast was better than the model based forecasts for the first 3 forecasted days. For the days 4 & 5, the model based forecasts as well as the value added forecasts were qualitatively almost the equal. From Table-1, it can be seen that the RS and HKS scores were better for model based forecasts for Days 1, 2 & 4. RMSE for all the 5 days w.r.t. value added forecast was marginally lower than those of the model based forecasts. During winter season the model based forecasts were qualitatively very effective and the value additions did not make any large difference. The value added forecasts during Pre Monsoon Season 2022 did not make any large difference to the model based forecasts. As seen from Table-1 and Figure-2, the model based forecasts and the value added forecasts were qualitatively almost at par. RMSE for all the 5 days w.r.t. value added forecast was however marginally lower than those of the model based forecasts during this season.

				3	IONSO	ON 202	21								POS	T MON	SOON	2021			
L		Mod	del Fore	cast		,	Value A	dded H	orecas	t	ILA	1	Mod	lel Fore	ecast			Value A	dded F	orecas	t
AKO	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	AKO	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	29	25	24	26	26	30	28	26	29	29	A	1	2	1	2	2	2	3	2	2	2
B	3	4	8	4	4	1	4	5	4	3	B	5	2	6	4	7	5	3	6	5	6
С	1	3	2	3	3	1	2	3	1	2	C	2	1	1	1	0	1	0	0	1	0
D	1	2	0	1	1	0	0	0	0	0	D	19	22	19	20	18	19	21	19	19	19
MAT	30	27	24	27	27	30	28	26	29	29	MAT	20	24	20	22	20	21	24	21	21	21
RS	\$8.2	79.4	70.6	79.4	79.4	88	82.4	76.5	85.3	85.3	RS	74,1	\$8.9	74.1	81.5	74.1	77.8	88.9	77.8	77.8	77.8
HKS	0.2	0.2	-0.1	0.1	0.1	0.0	-0.1	-0.1	0.0	-0.1	HKS	0.1	0.6	0.3	0.5	0.7	0.5	0.9	0.8	0.5	0.8
POD	1.0	0.9	0.9	0.9	0.9	1.0	0.9	0.9	1.0	0.9	POD	0.3	0.7	0.5	0.7	1.0	0.7	1.0	1.0	0.7	1.0
FAR	0.1	0.1	0.3	0.1	0.1	0.0	0.1	0.2	0.1	0.1	FAR	0.8	0.5	0.9	0.7	0.8	0.7	0.5	0.8	0.7	0.8
CSI	0.9	0.8	0.7	0.8	0.8	0.9	0.8	0.8	0.9	0.9	CSI	0.1	0.4	0.1	0.3	0.2	0.3	0.5	0.3	0.3	0.3
HSS	0.3	0.2	-0.1	0.1	0.1	0.0	-0.1	-0.1	0.0	-0.1	HSS	0.1	0.5	0.1	0.3	0.3	0.3	0.6	0.3	0.3	0.3
RMSE	26.2	26.0	14.0	13.3	18,5	11.5	10.4	14.6	8.4	9.9	RMSE	14.9	11.9	18.5	17.1	20.5	5.7	1.7	2.7	6.0	4.6
					a serie series										-						
					WINTE	R 2022	2								PRE	MON	SOON 2	2022			
1	WINTER 2022 Wodel Forecast Value Added Foreca Value Added Forecast Value Added Forecast Value Added Forecast Value Added Forecast Value Added Forecast							orecas	t	1	-	Mod	iel Fore	ecast	MON	SOON	2022 Value A	dded F	orecast	t	
VIOIV	Day1	Day2	iel Fore	Day4	Days	I fied	Value A	dded H	orecas Day4	Days	AKOLA	Day1	Day2	fel Ford	PRI trast	Sind	Day1	Value A	dded F	orecasi the the the test of test o	Days
X AKOLA	1 fáng 16	Mod ZÁRQ 16	Fore Execution 16	Prast Prast 16	sáng 16	I AP 2022	Value A CÂBQ 16	dded F Sáng 16	orecas	t Sán 16	Z VKOLA	1/mg 27	Mod Záng 27	SARD 27	PRE scast	sking 27	1/ieq 27	Value A	dded I SAu 27	orecas Min 27	sánd 27
A XKOLA	16 16 1	Moc 7 Aug 16	Sheq 16	Prast Prast 16 1	sáeq 16 0	16 1	Value A Value A Info 16	dded F Sáeq 16	Forecas	t SAEQ 16 2	> Z VKOLA	1 Keg 27	Mod Cáeg 27 1	Cheq 27 0	PRI scast	Shed 27 1	1 Keg 27 2	2022 Value A 27 1	dded F Sing 27 0	orecas Pred 27 1	Shing 27
VIOIV N A B	16 16 1	Mod 2Åeq 16 1	Fore RANG 16 1 1	**************************************	SARD 16	16 1 0	Value A Value A I I I I I I I I I I I	dded F Freq 16 1	The part of the pa	t SARD 16	VKOLA B	27 1 0	Mod 27 1	27 0 4	27 1 0	27 1 1	1/100000000000000000000000000000000000	2022 Value A 27 1 0	dded F Rig 27 0 2	27 1	27 1 1
VTOXV N A B C	16 1 1 0	Mod 2 Keq 16 1 1 0	Exec 16 1 1 0	2000 16	SÁRQ 16 0 1	16 1 2	Value A Value A 16 1 1	dded F FAU 16 1 1 0	The Corecas	s Areq 16	VTOXV X A B C	1/meg 27 1 0	Mod 2/27 1 1 0	27 0 4	27 1 0	27 1 1	27 2 0 1	2022 Value A 27 1 0 1	27 0 2 1	27 1 1	27 1 0
VTOXV N. A. B. C. D.	16 1 1 1 14	Mod 2Åeq 16 1 1 0 14	16 16 1 1 14	16 1 1 1 1 1 1	SÁRQ 16 0 1 14	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Value A Value A 16 1 1 14	dded H SAU 16 1 1 1 1 1	Torecas 7 And 16 1 0 1 14	t 16 2 1 0 13	VTOXV N A B C D	1/ieq 27 1 0 26	Mod 27 1 1 25	27 0 4 1 22	27 1 0 26	27 1 1 24	1/mg 27 2 0 1 23	2022 Value A 27 1 0 1 24	27 0 24	27 1 1 24	s Areq 27 1 1 25
VIOYV N A B C D MAT	16 1 1 1 1 1 1 1 1 5	Mod 2ÅEQ 16 1 1 1 0 14 15	16 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SÁRQ 16 0 1 14 14	16 13 14	Value A Value A 16 0 1 14 14	dded F Sing 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Torecas 16 1 0 1 14 15	t SÁTEQ 16 2 1 0 13 15	VIONV N A B C D MAT	27 1 0 26 27	Mod 27 1 1 25 26	27 0 4 22 22	PRE scast 27 1 0 26 27	27 1 1 24 25	27 2 0 1 23 25	2022 Value A 27 1 0 1 24 25	dded F 27 0 2 1 24 24	27 1 1 24 25	sống 27 1 1 25 26
VIONV N A B C D MAT RS	16 1 1 1 1 1 1 1 94	Mod 24 16 1 1 1 0 14 15 94	Execute 16 1 1 0 14 15 94	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SÁRQ 16 0 1 14 14 14 88	16 13 14 88	Value A Value A 16 0 1 1 14 14 87.5	dded F 2Aeq 16 1 1 1 1 1 1 1 1 1 1 1 1 1	16 1 14 15 94	t 16 2 1 13 15 94	VIONV N B C D MAT RS	27 1 0 26 27 100	Mod 27 1 1 0 25 26 96	27 0 4 1 22 81	27 1 0 26 27 100	27 1 1 24 25 93	27 2 0 1 23 25 93	2022 Value A 27 1 24 25 93	dded I 27 0 2 1 24 24 89	27 1 1 24 25 93	27 1 1 25 26 96
VIONY N A B C D MAT RS HKS	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mod 74 16 1 1 0 14 15 94 0.9	Exercised 16 1 1 0 14 15 94 0.9	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SÁRQ 16 0 1 14 14 88 -0	16 16 13 14 88 0.3	Value A Value A 16 0 1 1 14 14 87.5 -0.1	dded F Freq 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 1 14 15 94 0.5	t SATEQ 16 2 1 0 13 15 94 0.9	VIOXV N A B C D MAT RS HKS	27 1 0 26 27 100 1	Mod 27 1 1 0 25 26 96 1	27 0 4 1 22 81 -0	27 1 0 26 27 100 1	27 1 1 24 25 93 0.5	27 2 0 1 23 25 93 0.7	2022 Value A 27 1 24 25 93 0.5	added I 27 0 2 1 24 24 24 89 -0	27 1 1 24 25 93 0.5	27 1 1 25 26 96 1
VIONY N A B C D MAT RS HKS POD	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mod 16 1 1 0 14 15 94 0.9 1	16 16 1 1 1 1 1 1 1 1 9 4 0.9 1	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 AFEQ 16 0 1 1 1 1 1 4 1 4 88 -0 0	16 16 13 14 88 0.3 0.3	Value A Value A 16 0 1 1 14 14 87.5 -0.1 0	dded F 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Terecas 16 1 16 1 14 15 94 0.5 0.5	t 16 2 1 0 13 15 94 0.9 1	VTOXV N A B C D MAT RS HKS POD	27 1 0 26 27 100 1 1	Mod 27 1 1 0 25 26 96 1 1	27 0 4 1 22 81 -0 0	PRE cast 27 1 0 26 27 100 1 1 1	27 1 1 24 25 93 0.5 0.5	27 2 0 1 23 25 93 0.7 0.7	2022 Value A 27 1 0 1 24 25 93 0.5 0.5	dded F	27 1 1 24 25 93 0.5 0.5	27 1 1 25 26 96 1 1
N N N N N N N N N N N N N N N N N N N	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mod 16 1 1 0 14 15 94 0.9 1 0.5	16 16 1 1 1 0 14 15 94 0.9 1 0.5	2000 16 1 1 1 0 14 15 94 0.9 1 0.5	5460 16 0 1 14 14 14 88 -0 0 1	R 2022	Value A Value A 16 0 1 1 14 14 87.5 -0.1 0 1	dded I 16 1 1 0 14 15 94 0.9 1 0.5	Terecas 16 1 16 1 14 15 94 0.5 0.5 0	t 16 2 1 0 13 15 94 0.9 1 0.3	N N N B C D MAT RS HKS FOD FAR	27 1 0 26 27 100 1 1 0	Mod 27 1 1 0 25 26 96 1 1 0.5	27 0 4 1 22 81 -0 0 1	PRE cast 27 1 0 26 27 100 1 1 0 0 26 27 100 1 0 0 26 27 100 1 0 0 27 100 1 0 0 26 27 100 1 0 0 26 27 100 1 0 0 26 27 100 1 0 0 26 27 100 1 0 0 27 100 1 0 0 1 0 0 1 0 0	27 1 1 24 25 93 0.5 0.5 0.5	27 2 0 1 23 25 93 0.7 0.7 0 0	2022 Value A 27 1 24 25 93 0.5 0.5 0	dded F	27 1 1 24 25 93 0.5 0.5 0.5	27 1 0 25 26 96 1 1 0.5
N A B C D D MAT RS HKS POD FAR CSI	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mod 7 A P P P P P P P P P P P P P P P P P P	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 ARG 16 0 1 14 14 14 88 -0 0 1 0 1 0	16 16 1 13 14 88 0.3 0 0.3 0 0.3	Value A Value A 16 0 1 1 14 14 87.5 -0.1 0 1 0	dded I 16 1 1 1 0 14 15 94 0.9 1 0.5 0.5	01 16 1 14 15 0.5 0 0.5 0 0.5	t 16 2 1 0 13 15 94 0.9 1 0.3 0.7	N N A B C D D MAT RS HKS POD FAR CSI	27 1 0 26 27 100 1 1 0 1	Mod 27 1 1 25 26 96 1 1 0.5 0.5	27 0 4 1 22 81 0 0 1 0	27 1 0 26 27 100 1 1 0 1	27 1 1 24 25 93 0.5 0.5 0.5 0.5 0.3	27 2 0 1 23 25 93 0.7 0.7 0.7 0.7	2022 Value A 27 1 24 25 93 0.5 0.5 0.5 0.5	dded F 27 0 2 1 24 24 24 89 -0 0 1 0	27 1 1 24 25 93 0.5 0.5 0.5 0.5 0.3	27 1 0 25 26 96 1 1 0.5
N A B C D D MAT RS HKS POD FAR CSI HSS	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mod 7 A P P P P P P P P P P P P P P P P P P	Information Information 16 1 1 1 0 14 15 94 0.9 1 0.5 0.5 0.6 0.6	16 1 1 1 1 0 14 15 94 0.9 1 0.5 0.5 0.6	5 Areq 16 0 1 14 14 14 14 14 14 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	R 2022	Value A Value A 16 0 1 14 14 14 87.5 -0.1 0 1 0 -0.1	dded I 5 16 1 1 1 1 1 1 1 1 1 1 1 1 1	07ecas 16 1 0 1 14 15 0.5 0 0.5 0.5 0.6	t 16 2 1 0 13 15 94 0.9 1 0.3 0.7 0.8	N N A B C D D MAT RS HKS POD FAR CSI HSS	27 1 0 26 27 100 1 1 0 1 1 1	Mod 27 1 1 0 25 26 96 1 1 0.5 0.5 0.6	27 0 4 1 22 81 0 0 1 0 0	27 1 0 26 27 100 1 0 1 0 1 1 0 1 1 0 1 1 0	27 1 1 24 25 93 0.5 0.5 0.5 0.5 0.5 0.5 0.5	27 2 0 1 23 25 93 0.7 0.7 0.7 0.7 0.7 0.8	2022 Value A 27 1 24 25 93 0.5 0.5 0.5 0.5 0.5	dded F 27 0 2 1 24 24 24 24 0 0 1 0 0 1 0 0	27 1 1 24 25 93 0.5 0.5 0.5 0.3 0.3 0.5	27 1 1 25 26 96 1 1 0.5 0.5 0.6

Table 1: Verification of Forecasted rainfall (Model & Value added) for Akola

Fig 2: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Akola

3.1.2 Verification of Rainfall for Amravati

As seen in Table-2 and Figure-3, during the SW Monsoon season of the study period, the model forecasts qualitative efficacy in terms of Correct and Usable was <30% for all the 5 forecasted days, where as those of the value added forecasts were >50% for all the forecasted days except for day 4 where it was observed to be about 40%. From Table-2, it can also be seen that the skill scores for all the 5 days were better for value added forecasts as compared with those of the model forecasts for SW Monsoon 2021. RMSE for all the 5 days w.r.t. value added forecast was also much less than those of the model based forecasts, which shows that the value added forecasts were qualitatively better as compared to the model based forecasts. As seen from Table-2 and Figure-3, qualitative forecast for rainfall during the Post Monsoon season of 2021 were about 80% and above for both model based and value added forecasts. However, the qualitative

efficacy of the value added forecast was better than the model based forecasts for all the 5 forecasted days, except day 2 where the efficacy was observed to be the same. From Table-2, it can also be seen that the skill scores for all the 5 days were better for value added forecasts as compared with those of the model forecasts for the Post Monsoon Season of 2021. RMSE for all the 5 days w.r.t. value added forecast was much less than those of the model based forecasts, which shows that the value added forecasts were qualitatively marginally better as compared to the model based forecasts for this season. Table-2 and Figure-3 suggest that in this season, the model based forecasts were qualitatively very effective and the value additions did not make any large difference. Similar to winter season, as seen from Table-2 and Figure-3, in this season, the model based forecasts and the value added forecasts were qualitatively at par.

-				N	IONSO	ON 202	21				I				POS	T MON	SOON	2021			
VAT		Mod	lel Fore	ecast		1	Value A	dded 1	Forecas	t	VAT		Mo	del Fore	cast			Value A	dded I	orecas	t
AMBAY	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	AMRA	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	30	29	27	27	30	28	30	30	29	32	A	3	3	1	3	3	4	4	2	3	4
B	4	3	6	5	2	3	2	2	3	2	B	3	2	6	4	6	3	2	6	4	3
C	0	1	1	2	2	2	2	0	2	0	C	2	3	1	0	2	1	2	0	0	1
D	0	1	0	0	0	1	0	2	0	0	D	19	19	19	20	16	19	19	19	20	19
MAT	30	30	27	27	30	29	30	32	29	32	MAT	22	22	20	23	19	23	23	21	23	23
RS	88.2	2 88.2 79.4 79.4 88.2 85 88.2 94.1 1 0 0.2 0.0 -0.1 -0.1 0.2 -0.1 0.5									RS	81.5	81.5	74.1	85.2	70.4	85.2	85.2	77.8	85.2	85.2
HKS	0.0	0.2	0.0	-0.1	-0.1	0.2	-0.1	0.5	-0.1	0.0	HKS	0.5	0.4	0.3	0.8	0.3	0.7	0.6	0.8	0.8	0.7
POD	1.0	1.0	1.0	0.9	0.9	0.9	0.9	1.0	0.9	1.0	POD	0.6	0.5	0.5	1.0	0.6	0.8	0.7	1.0	1.0	0.8
FAR	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	FAR	0.5	0.4	0.9	0.6	0.7	0.4	0.3	0.8	0.6	0.4
CSI	0.9	0.9	0.8	0.8	0.9	0.8	0.9	0.9	0.9	0.9	CSI	0.4	0.4	0.1	0.4	0.3	0.5	0.5	0.3	0.4	0.5
HSS	0.0	0.3	-0.1	-0.1	-0.1	0.2	-0.1	0.6	-0.1	0.0	HSS	0.4	0.4	0.1	0.5	0.3	0.6	0.6	0.3	0.5	0.6
RMSE	51.9	46.3	26.8	32.0	37.9	10.9	11.2	9.2	11.1	11.5	RMSE	21.7	8.9	17.3	23.3	16.6	4.2	5.1	3.2	2.0	3.2
-			3 0		WINTE	R 202	2				-		14 1		PRE	MON	SOON	2022		5 S	2
IV	1	Mod	lel Fore	cast			Value A	dded 1	Forecas	t	1 2	-	Mo	del Fore	cast			Value A	dded I	orecas	t
AMBAV	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	AMRAV	Day1	Day2	Day3	Day4	Days	Day1	Day2	Day3	Day4	Day5
N	16	16	16	16	16	16	16	16	16	16	N	28	28	28	28	28	28	28	28	28	28
A	1	1	1	1	1	1	1	1	1	1	A	0	1	1	0	2	1	0	1	2	0
B	2	3	2	1	1	0	1	1	1	2	B	1	4	3	2	1	2	3	1	1	1
C	1	0	1	0	2	2	0	1	0	0	C	1	0	1	2	1	0	1	1	1	1
D	12	12	12	14	12	13	14	13	14	13	D	26	23	23	24	24	25	24	25	24	26
MAT	13	13	13	15	13	14	15	14	15	14	MAT	26	24	24	24	26	26	24	26	26	26
RS	81	81	81	94	81	88	93.8	88	94	88	RS	93	86	86	86	93	93	86	93	93	93
HKS	0.4	81 81 81 94 81 88 93.8 88 94 0.4 0.8 0.4 0.9 0.3 0.3 0.93 0.4 0.9									HKS	-0	0.9	0.4	-0	0.6	0.9	-0	0.5	0.6	-0
POD										1	POD	0	1	0.5	0	0.7	1	0	0.5	0.7	0
FAR	0.7 0.8 0.7 0.5 0.5 0 0.5 0.5 0.5									0.7	FAR	1	0.8	0.8	1	0.3	0.7	1	0.5	0.3	1
CSI	0.3 0.3 0.3 0.5 0.3 0.3 0.5 0.3 0.5									0.3	CSI	0	0.2	0.2	0	0.5	0.3	0	0.3	0.5	0
HSS	0.3 0.3 0.3 0.6 0.3 0.4 0.64 0.4 0.6								0.4	HSS	-0	0.3	0.3	-0	0.6	0.5	-0	0.5	0.6	-0	
RMSE	6.6	0.3 0.3 0.3 0.6 0.5 0.4 0.64 0.4 6.6 8.8 7.8 17 10 1.6 0.81 1								8.4	RMSE	0.4	1.7	3.7	1.2	1.6	0.6	15	0.7	0.8	0.5

Table 2: Verification of Forecasted rainfall (Model & Value added) for Amravati

Fig 3: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Amravati

3.1.3 Verification of Rainfall for Buldhana

As seen in Table-3 and Figure-4, during the SW Monsoon season of the study period, the model forecasts qualitative efficacy in terms of Correct and Usable was <40% for all the 5 forecasted days, where as those of the value added forecasts were >40%. From Table-3, it can also be seen that the skill scores for all the 5 days were better for value added forecasts as compared with those of the model forecasts for the SW Monsoon Season of 2021. RMSE for all the 5 days w.r.t. value added forecasts.

As seen from Table-3 and Figure-4, the qualitative forecast for rainfall during the Post Monsoon season of 2021 were about 80% and above for both model based and value added forecast and the qualitative efficacy of both model based and value added forecasts were similar.

As seen from Tables-3 and Figure-4, the model based forecasts were qualitatively very effective and the value additions did not make any large difference during winter season as well as the Pre Monsoon season of the study period

-				N	IONSO	ON 202	21				-				POS	T MON	SOON	2021			
S		Moo	lel Fore	cast			Value A	dded H	Forecas	t	3		Moo	lel Fore	cast		1	Value A	dded H	orecas	t
HCIDH	Dayl	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	HULDH	Dayl	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	31	30	29	29	29	33	30	29	31	31	A	4	3	2	6	4	5	5	3	3	4
В	1	3	5	1	3	1	2	1	1	1	B	2	1	5	0	6	2	1	5	1	4
C	2	0	0	-4	2	0	1	0	0	3	С	2	3	1	Ð	0	1	1	0	2	0
D	0	1	0	0	0	0	1	4	1	0	D	19	20	19	21	17	19	20	19	21	19
MAT	31	31	29	29	29	33	31	33	32	31	MAT	23	23	21	27	21	24	25	22	24	23
RS	91.2	91.2	85.3	85.3	85.3	97	91.2	97.1	94.1	91.2	RS	85.2	85.2	77.8	-	77.8	88.9	92.6	81.5	88.9	85.2
HKS	-0.1	0.3	0.0	-0.1	-0.1	0.0	0.3	0.8	0.5	-0.1	HKS	0.6	0.5	0.5	1.0	0.7	0.7	0.8	0.8	0.6	0.8
POD	0.9	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0	0.9	POD	0.7	0.5	0.7	1.0	1.0	0.8	0.8	1.0	0.6	1.0
FAR	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	FAR	0.3	0.3	0.7	0.0	0.6	0.3	0.2	0.6	0.3	0.5
CSI	0.9	0.9	0.9	0.9	0.9	1.0	0.9	1.0	1.0	0.9	CSI	0.5	0.4	0.3	1.0	0.4	0.6	0.7	0.4	0.5	0.5
HSS	0.0	0.4	0.0	0.0	-0.1	0.0	0.4	0.9	0.7	0.0	HSS	0.6	0.5	0.3	1.0	0.5	0.7	0.8	0.5	0.6	0.6
RMSE	33.2	29.7	16.7	22.6	19.3	14.0	14.8	8.6	13.1	13.7	RMSE	12.4	7.9	10.9	14.2	14.7	2.7	2.8	2.5	6.8	3.1
Y					WINTE	ER 2022	2				4				PRE	E MON	SOON 2	2022			
2		Moo	lel Fore	cast	si		Value A	dded H	Forecas	t	4		Moo	lel Fore	cast			Value A	dded H	orecas	t
BULDH	Dayl	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	BULDH	Dayl	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	16	16	16	16	16	16	16	16	16	16	N	27	27	27	27	27	27	27	27	27	27
A	1	0	1	0	0	1	0	1	0	1	A	0	0	0	0	0	0	0	0	0	0
В	1	0	2	1	1	0	1	1	1	1	B	1	2	4	2	3	0	3	2	3	2
С	1	1	0	1	1	2	1	0	1	1	С	0	0	1	0	0	0	0	1	0	0
D	13	15	13	14	14	13	14	14	14	13	D	26	- 25	22	-25	24	27	24	24	24	25
MAT	14	15	14	14	14	14	14	15	14	14	MAT	26	25	22	25	24	27	24	24	24	25
RS	88	94	88	88	88	88	87.5	94	88	88	RS	96	93	81	93	89	100	89	89	89	93
HKS	0.4	0	0.9	-0	-0	0.3	-0.1	0.9	-0	0.4	HKS	-	-	-0	-	-		1.1	-0	-	-
POD	0.5	0	1	0	0	0.3	0	1	0	0.5	POD	100		0	-	-	- 24 I.	-	0	-	100
FAR	0.5		0.7	1	1	0	1	0.5	1	0.5	FAR	1	1	1	1	1	-	1	1	1	1
CSI	0.3	0	0.3	0	0	0.3	0	0.5	0	0.3	CSI	0	0	0	0	0		0	0	0	0
HSS	0.4	0	0.4	-0	-0	0.4	-0.1	0.6	-0	0.4	HSS	0	0	-0	0	0		0	-0	0	0
RMSE	1.6	2.3	4.5	11	5.8	1.1	0.88	1	2.9	2.2	RMSE	0.8	1.9	1.9	1	1.7	0	1.9	0.8	0.7	0.5

Table 3: Verification of Forecasted rainfall (Model & Value added) for Buldhana

Fig 4: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Buldhana

3.1.4 Verification of Rainfall for Chandrapur

As seen in Table-4 and Figure-5, during the SW Monsoon season of the study period, the model forecasts qualitative efficacy in terms of Correct and Usable was <40% for all the 5 forecasted days, where as those of the value added forecasts were >40%. From Table-4, it can also be seen that the skill scores for all the 5 days were better for value added forecasts as compared with those of the model forecasts for the SW Monsoon Season of 2021. RMSE for all the 5 days w.r.t. value added forecasts.

As seen from Table-4 and Figure-5, qualitative forecast for rainfall during the Post Monsoon season of 2021 were about 80% and above for both model based and value added forecast and the qualitative efficacy of both model based and value added forecasts were similar. As seen from Table-4 and Figure-5, during winter season the model based forecasts were qualitatively very effective and the value additions did not make any large difference. Similar to winter season, as seen from Table-4 and Figure-5, the model based forecasts and the value added forecasts for Pre-Monsoon season during the study period were qualitatively at par.

¥					IONSO	ON 20.	21				#				POS	I MON	SOON	2021			
H		Moo	lel Fore	cast			Value A	dded I	Forecas	t	P		Mod	lel Fore	cast		1	Value A	dded F	orecas	t
CHANDRA	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	CHANDRA	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Days
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	30	31	28	29	28	30	31	29	32	30	A	5	4	5	4	3	5	4	6	4	3
В	4	3	4	2	4	0	1	3	1	1	B	5	4	3	4	4	3	4	3	4	6
с	0	0	1	3	2	0	1	1	1	2	C	0	0	1	0	0	0	0	0	0	0
D	0	0	1	0	0	4	2	1	0	1	D	17	19	18	19	20	19	19	18	19	18
MAT	30	31	29	29	28	34	33	30	32	31	MAT	22	23	23	23	23	24	23	24	23	21
RS	\$8.2	91.2	85.3	85.3	82.4	100	97.1	88.2	94.1	91.2	RS	81.5	85.2	85.2	85.2	85.2	\$8.9	\$5.2	88.9	85.2	77.8
HKS	0.0	0.0	0.2	-0.1	-0.1	1.0	0.6	0.2	0.0	0.4	HKS	0.8	0.8	0.7	0.8	0.8	0.9	0.8	0.9	0.8	0.8
POD	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0	0.9	POD	1.0	1.0	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0
FAR	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.0	0.0	FAR	0.5	0.5	0.4	0.5	0.6	0.4	0.5	0.3	0.5	0.7
CSI	0.9	0.9	0.8	0.9	0.8	1.0	0.9	0.9	0.9	0.9	CSI	0.5	0.5	0.6	0.5	0.4	0.6	0.5	0.7	0.5	0.3
HSS	0.0	0.0	0.2	-0.1	-0.1	1.0	0.6	0.3	0.0	0.4	HSS	0.6	0.6	0.6	0.6	0.5	0.7	0.6	0.7	0.6	0.4
RMSE	25.2	28.3	31.4	23.6	30.5	16.1	9.2	14.6	17.5	12.7	RMSE	8.6	10.0	12.2	8.7	13.5	3.4	2.6	4.2	2.6	1.9
Ř		916	115-1 2		WINTI	R 2022	2	÷	-	-	1 PK	_	14	1	PRE	MON	SOON	2022	8		-
L.		Moo	iel Fore	ecast		1.1.1	Value A	dded I	Forecas	t	P.		Mod	lel Fore	cast		1	Value A	dded F	orecas	t
CHANDRA	Day1	Day2	Day3	Day4	Day5	Dayl	Day2	Day3	Day4	Day5	CHANDRA	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	16	16	16	16	16	16	16	16	16	16	N	27	27	27	27	27	27	27	27	27	27
A	2	2	0	2	2	2	1	0	2	1	A	0	0	1	0	0	0	0	1	0	0
B	0	2	5	0	2	0	2	3	0	3	B	3	5	6	6	9	10	7	5	3	3
С	0	0	1	0	0	0	1	1	0	1	C	0	0	0	0	0	0	0	0	0	0
D	14	12	10	14	12	14	12	12	14	11	D	24	22	20	21	18	17	20	21	24	24
MAT	16	14	10	16	14	16	13	12	16	12	MAT	24	22	21	21	18	17	20	22	24	24
RS	100	\$8	63	100	88	100	81.3	75	100	75	RS	\$9	- \$1	78	78	67	63	74	81	89	89
HKS	1	0.9	-0	1	0.9	1	0.36	-0	1	0.3	HKS	- 14 C	-	0.8	- (#C	- 20			0.8	-	1.4
POD	1	1	0	1	1	1	0.5	0	1	0.5	POD	-	-	1	-	-		-	1	-	
FAR	0	0.5	1	0	0.5	0	0.67	1	0	0.8	FAR	1	1	0.9	1	1	1	1	0.8	1	1
CSI	1	0.5	0	1	0.5	1	0.25	0	1	0.2	CSI	0	0	0.1	0	0	0	0	0.2	0	0
HSS	1	0.6	-0	1	0.6	1	0.29	-0	1	0.2	HSS	0	0	0.2	0	0	0	0	0.2	0	0
RMSE	3.9	10	9.2	6.4	5.1	3	3.78	3.9	1.7	2.7	RMSE	1.3	1.7	2.3	1.5	1.8	1.4	1.4	1.4	0.9	0.9

Table 4: Verification of Forecasted rainfall (Model & Value added) for Chandrapur

Fig 5: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Chandrapur

3.1.5 Verification of Rainfall for Gadchiroli

Table-5 and Figure-6 suggest that during the SW Monsoon season of the study period, the model forecasts qualitative efficacy in terms of Correct and Usable was <40% for all the forecasted days except day 5, where as it was slightly above 40%. The forecast efficacy of the value added forecasts were >40% for all the 5 days, though day 5 it was comparable with that of the model based forecast. From Table-5, it can also be seen that RMSE for all the 5 days w.r.t. value added forecasts was also much less than those of the model based forecasts.

As seen from Table-5 and Figure-6, qualitative forecast for rainfall during the Post Monsoon season of 2021 were slightly <80% and slightly >80% for value added forecasts. Table-5 and Figure-6, show that during winter season, the model based forecasts were qualitatively very effective and the value additions did not make any large difference. Similar to winter season, as seen from Table-5 and Figure-6, the model based forecasts and the value added forecasts for Pre-Monsoon season during the study period were qualitatively at par.

EI				7	IONSO	OON 20	21				1				POS	T MON	SOON	2021			
IRO		Mo	lel Fore	ecast			Value A	dded F	orecas	t I	IRO		Mod	lel Fore	cast			Value A	dded F	orecas	t
GADCH	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	GADCH	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	33	32	27	31	31	33	33	29	32	32	A	6	5	6	3	6	6	5	7	3	6
B	1	1	- 5	0	1	1	0	0	1	1	B	4	3	2	- 5	1	2	3	2	5	4
C	0	1	2	2	2	0	0	2	1	0	C	0	1	1	0	0	0	1	0	0	0
D	0	0	0	1	0	0	1	3	0	1	D	17	18	18	19	20	19	18	18	19	17
MAT	33	32	27	32	31	33	34	32	32	33	MAT	23	23	24	22	26	25	23	25	22	23
RS	97.1	94.1	79.4	94.1	91.2	97	100.0	94.1	94.1	97.1	RS	85.2	85.2	88.9	81.5	96.3	92.6	85.2	92.6	81.5	85.2
HKS	0.0	0.0	-0.1	0.9	-0.1	0.0	1.0	0.9	0.0	0.5	HKS	0.8	0.7	0.8	0.8	1.0	0.9	0.7	0.9	0.8	0.8
POD	1.0	1.0	0.9	0.9	0.9	1.0	1.0	0.9	1.0	1.0	POD	1.0	0.8	0.9	1.0	1.0	1.0	0.8	1.0	1.0	1.0
FAR	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	FAR	0.4	0.4	0.3	0.6	0.1	0.3	0.4	0.2	0.6	0.4
CSI	1.0	0.9	0.8	0.9	0.9	1.0	1.0	0.9	0.9	1.0	CSI	0.6	0.6	0.7	0.4	0.9	0.8	0.6	0.8	0.4	0.6
HSS	0.0	0.0	-0.1	0.5	0.0	0.0	1.0	0.7	0.0	0.7	HSS	0.7	0.6	0.7	0.5	0.9	0.8	0.6	0.8	0.5	0.7
RMSE	21.6	30.5	31.2	20.3	34.4	12.2	13.8	16.4	12.2	13.9	RMSE	7.9	9.0	12.0	10.7	12.7	3.5	3.1	2.9	2.9	2.5
3					WINT	ER 202	2			-	3				PRE	MON	SOON	2022			
0		Mo	lel For	cast			Value A	dded F	orecas		1 Q		Mod	lel Fore	cast			Value A	dded F	orecas	1
8	-					-	1			-	8	-					-				_
GADCI	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	GADCE	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	16	16	16	16	16	16	16	16	16	16	N	27	27	27	27	27	27	27	27	27	27
A	2	2	1	2	2	2	1	1	2	1	A	1	1	2	2	2	3	1	2	2	1
B	0	2	- 4	0	2	0	0	1	0	2	B	2	4	5	4	7	6	7	4	1	1
C	0	0	0	0	0	0	1	0	0	1	C	2	0	0	0	0	0	0	0	0	1
D	14	12	11	14	12	14	14	14	14	12	D	22	22	20	21	18	18	19	21	24	24
MAT	16	14	12	16	14	16	15	15	16	13	MAT	23	23	22	23	20	21	20	23	26	25
RS	100	\$8	75	100	88	100	93.8	94	100	81	RS	85	85	81	85	74	78	74	85	96	93
HKS	1	0.9	0.7	1	0.9	1	0.5	0.9	1	0.4	HKS	0.3	0.8	0.8	0.8	0.7	0.8	0.7	0.8	1	0.5
POD	1	1	1	1	1	1	0.5	1	1	0.5	POD	0.3	1	1	1	1	1	1	1	1	0.5
FAR	0	0.5	0.8	0	0.5	0	0	0.5	0	0.7	FAR	0.7	0.8	0.7	0.7	0.8	0.7	0.9	0.7	0.3	0.5
CSI	1 0.5 0.2 1 0.5 1 0.5 0.5 1							0.3	CSI	0.2	0.2	0.3	0.3	0.2	0.3	0.1	0.3	0.7	0.3		
HSS	1	0.6	0.3	1	0.6	1	0.64	0.6	1	0.3	HSS	0.3	0.3	0.4	0.4	0.3	0.4	0.2	0.4	0.8	0.5
RMSE	37	5.1	8.9	7.8	6.8	1.3	2.1	2.8	1.2	1.9	RMSE	0.9	1.7	2	13	1.8	12	2.6	1.2	0.6	0.7

 Table 5: Verification of Forecasted rainfall (Model & Value added) for Gadhchiroli

Fig 6: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Gadhchiroli

3.1.6 Verification of Rainfall for Gondia

It can be seen from Table-6 and Figure-7 that during the SW Monsoon season of the study period, the value added forecasts qualitative efficacy in terms of Correct and Usable was about 50-60% for days 1, 2, 3 and 5, much higher than those of the model based forecasts, whereas for day 4, it was slightly less than the model forecast, however both were <40%. From Table-6, however, it can be seen that RMSE for

all the 5 days w.r.t. value added forecast was comparatively less than those of the model based forecasts. As seen from Tables-6 and Figures-7, qualitative forecast for rainfall during the Post Monsoon season Winter season and Pre-Monsoon season of the study period, the model based forecasts were qualitatively very effective (>80%) and the value additions did not make any large difference, however value added forecasts were slightly better.

×		201210	0.010.0	2	IONSO	ON 203	21	1000000			5				POS	I MON	SOON	2021		_	
ā		Mod	iel Fore	cast			Value A	dded H	orecas	t	Ā		Moo	del Fore	cast		1	Value A	dded H	orecas	t
GON	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	GON	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Days
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	29	31	30	30	28	29	31	30	31	29	A	2	3	5	3	3	2	4	5	3	4
B	5	3	3	3	4	2	0	2	2	5	B	3	3	2	4	3	3	3	3	4	3
C	0	0	0	1	1	0	1	1	0	0	C	2	2	0	1	1	2	1	0	1	0
D	0	0	1	0	1	3	2	1	1	0	D	20	19	20	19	20	20	19	19	19	20
MAT	29	31	31	30	29	32	33	31	32	29	MAT	22	. 22	25	22	23	22	23	24	22	24
RS	85.3	91.2	91.2	88.2	85.3	94	97.1	91.2	94.1	85.3	RS	81.5	81.5	92.6	81.5	85.2	\$1.5	85.2	88.9	81.5	\$8.9
HKS	0.0	0.0	0.3	0.0	0.2	0.6	1.0	0.3	0.3	0.0	HKS	0.4	0.5	0.9	0.6	0.6	0.4	0.7	0.9	0.6	0.9
POD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	POD	0.5	0.6	1.0	0.8	0.8	0.5	0.8	1.0	0.8	1.0
FAR	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	FAR	0.6	0.5	0.3	0.6	0.5	0.6	0.4	0.4	0.6	0.4
CSI	0.9	0.9	0.9	0.9	0.8	0.9	1.0	0.9	0.9	0.9	CSI	0.3	0.4	0,7	0.4	0.4	0.3	0.5	0.6	0.4	0.6
HSS	0.0	0.0	0.4	0.0	0.2	0.7	0.8	0.4	0.5	0.0	HSS	0.3	0.4	0.8	0.4	0.5	0.3	0.6	0.7	0.4	0.7
RMSE	28.0	38.3	27.2	23.3	22.0	11.4	12.1	14.8	16.8	11.9	RMSE	10.0	8.8	12.6	12.0	12.1	3.8	4.4	3.0	2.3	2.7
1	2 A	<u> </u>	1	S	WINT	R 2021	1	6	<u>8 - 1</u>	-	1		0	1000	PRE	MON	SOON	2022	6		C
ē		Mod	tel Fore	ecast			Value A	dded H	orecas	t	Ā		Moo	del Fore	ecast			Value A	dded I	orecas	t
60.	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	GON	Day1	Day2	Day3	Day4	Day5	Dayl	Day2	Day3	Day4	Day5
N	16	16	16	16	16	16	16	16	16	16	N	27	27	27	27	27	27	27	27	27	27
A	0	2	1	1	1	0	1	0	1	0	A	0	0	0	0	1	1	0	0	1	1
B	3	1	4	2	3	2	2	3	1	3	B	3	5	5	3	2	6	6	6	2	1
С	1	0	0	1	0	1	1	1	1	1	C	1	1	1	2	1	0	1	1	1	0
D	12	13	11	12	12	13	12	12	13	12	D	23	21	21	22	23	20	20	20	23	25
MAT	12	15	12	13	13	13	13	12	14	12	MAT	23	21	21	22	24	21	20	20	24	26
RS	75	94	75	81	81	81	81.3	75	88	75	RS	85	78	78	81	89	78	74	74	89	96
HKS	-0	0.9	0.7	0.4	0.8	-0.1	0.36	-0	0.4	-0	HKS	-0	-0	-0	-0	0.4	0.8	-0	-0	0.4	1
POD	0	1	1	0.5	1	0	0.5	0	0.5	0	POD	0	0	0	0	0.5	1	0	0	0.5	1
FAR	1	0.3	0.8	0.7	0.8	1	0.67	1	0.5	1	FAR	1	1	1	1	0.7	0.9	1	1	0.7	0.5
CSI	0	0.7	0.2	0.3	0.3	0	0.25	0	0.3	0	CSI	0	0	0	0	0.3	0.1	0	0	0.3	0.5
HSS	-0	0.8	0.3	0.3	0.3	-0.1	0.29	-0	0.4	-0	HSS	-0	-0	-0	-0	0.3	0.2	-0	-0	0.3	0.6
RMSE	5.6	3.5	5.8	5	5.6	2.4	0.74	3.9	2.6	7.4	RMSE	1	0.9	3.9	6.3	1.1	1.2	1.1	1.1	0.8	0.7

Table 6: Verification of Forecasted rainfall (Model & Value added) for Gondia

Fig 7: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Gondia

3.1.7 Verification of Rainfall for Nagpur

Table-7 and Figure-8 suggest that during the SW Monsoon season of the study period, the model forecasts qualitative efficacy in terms of Correct and Usable was <40% for all the 5 forecasted days. The forecast efficacy of the value added forecasts were >40% for all the 5 days, with 62% in day 2, 58% in day 3, and 54% in day 5. From Table-7, it can also be seen that RMSE for all the 5 days w.r.t. value added forecasts was also much less than those of the model based forecasts, showing better qualitative efficacy of the forecasts after value addition. As seen from Table-7 and Figure-8, qualitative

forecast for rainfall during the Post Monsoon season of 2021 were slightly <80% based on model forecasts only on day 5. Rest of the days the model based forecasts were >=80%. However, the value added forecasts exhibited better results. Table-7 and Figure-8, show that during winter season, the model based forecasts were qualitatively very effective and the value additions did not make any large difference. Similar to winter Similarly, as seen from Table-7 and Figure-8, the model based forecasts and the value added forecasts for Pre-Monsoon season during the study period were qualitatively at par.

- 102				N	IONSO	ON 202	11				1.1.1				POST	T MON	SOON	2021			
UR		Mod	lel Fore	cast		,	Value A	dded H	Forecas	t	CR		Mod	lel Fore	cast		1	Value A	dded I	orecas	t
NAGI	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	INAGI	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	32	33	28	32	31	32	33	30	32	32	A	3	3	2	4	4	4	4	4	4	4
B	2	1	4	1	1	1	1	1	0	2	B	2	3	4	2	5	1	2	3	2	3
C	0	0	2	1	1	0	0	0	1	0	C	2	2	2	0	0	1	1	0	0	0
D	0	0	0	0	1	1	0	3	1	0	D	20	19	19	21	18	21	20	20	21	20
MAT	32	33	28	32	32	33	33	33	33	32	MAT	23	22	21	25	22	25	24	24	25	24
RS	94.1	97.1	82.4	94.1	94.1	97	97.1	97.1	97.1	94.1	RS	85.2	81.5	77.8	92.6	81.5	92.6	88.9	88.9	92.6	88.9
HKS	0.0	0.0	-0.1	0.0	0.5	0.5	0.0	0.8	1.0	0.0	HKS	0.5	0.5	0.3	0.9	0.8	0.8	0.7	0.9	0.9	0.9
POD	1.0	1.0	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	POD	0.6	0.6	0.5	1.0	1.0	0.8	0.8	1.0	1.0	1.0
FAR	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	FAR	0.4	0.5	0.7	0.3	0.6	0.2	0.3	0.4	0.3	0.4
CSI	0.9	1.0	0.8	0.9	0.9	1.0	1.0	1.0	1.0	0.9	CSI	0.4	0.4	0.3	0.7	0.4	0.7	0.6	0.6	0.7	0.6
HSS	0.0	0.0	-0.1	0.0	0.5	0.7	0.0	0.8	0.7	0.0	HSS	0.5	0.4	0.3	0.8	0.5	0.8	0.7	0.7	0.8	0.7
RMSE	30.2	37.8	24.3	27.7	31.5	13.0	8.2	9.6	13.9	11.3	RMSE	17.4	8.2	12.5	12.8	10.2	3.9	2.5	2.4	2.9	2.3
				0	WINTE	R 2022									PRE	MONS	SOON 2	2022			
×	-	Mod	lel Fore	cast			Value A	dded H	Forecas	t	×		Mod	el Fore	cast			Value A	dded I	orecas	r
hdi					-	-				<u> </u>	H					_					<u> </u>
NAG	Model Forecast Value A								7.	5	AG	-	~	12	7	10	-	2	2	T.	ays
	-	9	ä	Da	Ä						Z,	Day	Day	Day	Day	Day	Day	Day	Da	Da	8
N	16	16	16	16	16	16	6 16	eQ 16	EQ 16	16	Z N	27	27	27	27	27	27	27	27	27	27
N A	16 2	16 2	16 1	16 2	16 2	16 3	16 1	60 16	16 2	16 1	Z N A	27 1	27 27	27 1	27 1	27 0	27 2	27 1	27 1	27 1	27 0
A B	16 2 1	16 2 2	16 1 2	0 16 2 0	16 2 2	16 3 0	16 1 1	16 1 2	16 2 0	16 1 3	Z N A B	27 1 2	27 2 2	27 1 5	27 1 4	27 0 5	27 27 2 8	27 1 3	27 1 4	27 1 2	27 0 3
A B C	16 2 1 1	16 2 2 0	16 1 2 1	16 2 0 1	16 2 2 0	16 3 0	16 1 1 1	16 1 2 1	16 2 0 1	16 1 3	Z N A B C	27 1 2 1	27 2 2 1	27 1 5 0	27 1 4 0	27 0 5	27 2 8 0	27 1 3 2	27 1 4 0	27 1 2 0	27 0 3 1
N A B C D	16 2 1 1 12	16 2 2 0 12	16 1 2 1 12	16 2 0 1 13	16 2 2 0 12	16 3 0 13	eq 16 1 1 13	16 1 2 1 12	16 2 0 1 13	16 1 3 1 11	Z N A B C D	27 1 23	27 2 2 1 22	27 1 5 0 21	27 1 4 0 22	27 0 5 1 21	27 2 8 0 17	27 1 3 21	27 1 4 0 22	27 1 2 0 24	27 0 3 1 23
N B C D MAT	16 2 1 1 12 14	16 2 2 0 12 14	16 1 2 1 12 13	16 2 0 1 13 15	16 2 2 0 12 14	16 3 0 13 16	16 1 1 13 14	eq 16 1 2 1 12 13	16 2 0 1 13 15	16 1 3 1 11 12	Z A B C D MAT	27 1 2 1 23 24	27 2 2 1 22 24	27 1 5 0 21 22	27 1 4 0 22 23	27 0 5 1 21 21	27 2 8 0 17 19	27 1 3 21 22	27 1 4 0 22 23	27 1 2 0 24 25	27 0 3 1 23 23
N B C D MAT RS	16 2 1 1 12 14 88	16 2 2 0 12 14 88	16 1 2 12 12 13 81	0 16 2 0 1 13 15 94	0 16 2 2 0 12 14 88	16 3 0 13 16 100	16 1 1 13 14 \$7.5	16 1 2 12 13 81	EQ 16 2 0 1 13 15 94	16 1 3 1 11 12 75	Z N A B C D MAT RS	27 1 23 24 89	27 2 2 2 2 2 2 2 2 2 2 2 4 89	27 1 5 0 21 22 81	27 1 4 0 22 23 85	27 0 5 1 21 21 78	27 2 8 0 17 19 70	27 1 3 21 22 81	27 1 4 0 22 23 85	27 1 2 0 24 25 93	27 0 3 1 23 85
N B C D MAT RS HKS	16 2 1 1 12 14 88 0.6	16 2 2 0 12 14 88 0.9	16 1 2 1 12 13 81 0.4	16 2 0 1 13 15 94 0.7	0 16 2 2 0 12 14 88 0.9	A 16 3 0 13 16 100 1	16 1 1 13 14 87.5 0.43	16 1 2 12 13 81 0.4	16 2 0 1 13 15 94 0.7	16 1 3 1 11 12 75 0.3	Z N A B C D MAT RS HKS	27 1 23 24 89 0.4	27 2 2 2 2 2 2 2 2 4 89 0.6	27 1 5 0 21 22 81 0.8	27 1 4 0 22 23 85 0.8	27 0 5 1 21 21 78 -0	27 2 8 0 17 19 70 0.7	27 1 3 21 22 81 0.2	27 1 4 0 22 23 85 0.8	27 1 2 0 24 25 93 0.9	27 0 3 1 23 23 85 -0
N A B C D MAT RS HKS POD	16 2 1 1 12 14 88 0.6 0.7	16 2 2 0 12 14 88 0.9 1	16 1 2 12 13 81 0.4 0.5	0 16 2 0 1 13 13 15 94 0.7 0.7	16 2 2 0 12 14 88 0.9 1	6 16 3 0 13 16 100 1 1 1	16 1 1 1 1 1 1 1 87.5 0.43 0.5	16 1 2 1 12 13 81 0.4 0.5	16 2 0 1 13 15 94 0.7 0.7	16 1 3 1 11 12 75 0.3 0.5	Z N A B C D MAT RS HKS POD	27 1 23 24 89 0.4 0.5	27 2 2 2 2 1 22 24 89 0.6 0.7	27 1 5 0 21 22 81 0.8 1	27 1 4 0 22 23 85 0.8 1	27 0 5 1 21 21 78 -0 0	27 2 8 0 17 19 70 0.7 1	27 1 3 21 22 81 0.2 0.3	27 1 4 0 22 23 85 0.8 1	27 1 2 24 25 93 0.9 1	27 0 3 1 23 23 85 -0 0
N A B C D MAT RS HKS POD FAR	16 2 1 1 12 14 88 0.6 0.7 0.3	P 16 2 2 0 12 14 88 0.9 1 0.5	16 1 2 1 12 13 81 0.4 0.5 0.7	n 16 2 0 1 13 15 94 0.7 0.7 0	A 16 2 0 12 14 88 0.9 1 0.5	A 16 3 0 13 16 100 1 1 0	16 1 1 1 1 1 1 3 14 87.5 0.43 0.5 0.5	16 1 2 1 12 13 81 0.4 0.5 0.7	16 2 0 1 13 15 94 0.7 0.7 0	16 1 3 1 11 12 75 0.3 0.5 0.8	Z N A B C D MAT RS HKS POD FAR	27 1 2 1 23 24 89 0.4 0.5 0.7	27 2 2 2 2 2 2 2 2 2 2 2 4 89 0.6 0.7 0.5	27 1 5 0 21 22 81 0.8 1 0.8	27 1 4 0 22 23 85 0.8 1 0.8	27 0 5 1 21 21 21 78 -0 0 1	27 2 8 0 17 19 70 0.7 1 0.8	27 1 3 21 22 81 0.2 0.3 0.8	27 1 4 0 22 23 85 0.8 1 0.8	27 1 2 0 24 25 93 0.9 1 0.7	27 0 3 1 23 23 85 -0 0 1
N A B C D MAT RS HKS POD FAR CSI	16 2 1 12 14 88 0.6 0.7 0.3 0.5	16 2 2 0 12 14 88 0.9 1 0.5 0.5	16 1 2 12 13 81 0.4 0.5 0.7 0.3	n 16 2 0 1 13 15 94 0.7 0.7 0 0.7	a 16 2 2 0 12 14 88 0.9 1 0.5 0.5	A 16 3 0 13 16 100 1 1 0 1 1 0 1	16 1 1 1 1 1 1 1 1 3 1 4 87.5 0.43 0.5 0.5 0.3 3	16 1 2 13 81 0.4 0.5 0.7 0.3	6 16 2 0 1 13 15 94 0.7 0.7 0 0.7	16 1 3 1 11 12 75 0.3 0.5 0.8 0.2	Z N A B C D MAT RS HKS POD FAR CSI	27 1 23 24 89 0.4 0.5 0.7 0.3	27 2 2 2 2 2 2 2 2 2 2 2 2 4 89 0.6 0.7 0.5 0.4	27 1 5 0 21 22 81 0.8 1 0.8 0.2	27 1 4 0 22 23 85 0.8 1 0.8 0.8 0.8 0.2	27 0 5 1 21 21 21 78 -0 0 1 0	27 2 8 0 17 19 70 0.7 1 0.8 0.2	27 1 3 2 21 22 81 0.2 0.3 0.8 0.2	27 1 4 0 22 23 85 0.8 1 0.8 0.2	27 1 2 0 24 25 93 0.9 1 0.7 0.3	27 0 3 1 23 23 85 -0 0 1 0
N A B C D MAT RS HKS POD FAR CSI HSS	16 2 1 12 14 88 0.6 0.7 0.3 0.5 0.6	16 2 2 0 12 14 88 0.9 1 0.5 0.5 0.6	16 1 2 1 12 13 81 0.4 0.5 0.7 0.3 0.3	A 16 2 0 1 13 15 94 0.7 0.7 0.7 0.7 0.8	A 16 2 2 0 12 14 88 0.9 1 0.5 0.5 0.6	G 16 3 0 13 16 100 1 1 0 1 1 1 0 1 1	6 16 1 1 1 1 1 1 1 1 1 1 1 1 1	16 1 2 1 12 13 81 0.4 0.5 0.7 0.3 0.3	6 16 2 0 1 13 15 94 0.7 0.7 0 0.7 0.8	16 1 3 1 11 12 75 0.3 0.5 0.8 0.2 0.2	Z N B C D MAT RS HKS POD FAR CSI HSS	27 1 23 24 89 0.4 0.5 0.7 0.3 0.3	xeq 27 2 2 2 2 2 2 2 2 2 2 2 2 2	27 1 5 0 21 22 81 0.8 1 0.8 0.2 0.2 0.2	xing 27 1 4 0 22 23 85 0.8 1 0.8 0.2 0.3	27 0 5 1 21 21 21 78 -0 0 1 0 0 -0	27 2 8 0 17 19 70 0.7 1 0.8 0.2 0.2	27 1 3 22 21 22 81 0.2 0.3 0.8 0.2 0.2	27 1 4 0 22 23 85 0.8 1 0.8 0.2 0.3	27 1 2 0 24 25 93 0.9 1 0.7 0.3 0.5	27 0 3 1 23 85 -0 0 1 0 -0 0 1 0 -0

Table 7: Verification of Forecasted rainfall (Model & Value added) for Nagpur

Fig 8: Qualitative accuracy correct +usable (C+I) and Incorrect (I) for rainfall for Nagpur

3.1.8 Verification of Rainfall for Wardha

It can be seen from Table-8 and Figure-9 that during the SW Monsoon season of the study period, the value added forecasts qualitative efficacy in terms of Correct and Usable was about 65% in day 1, 78% in day 2, 58% in day 3, 44% in da 4 and 60% in day 5 whereas the qualitative efficacy of the model based forecasts during this season was <40% for all the 5 forecasted days. From Table-8, it can also be seen that

RMSE for all the 5 days w.r.t. value added forecast was comparatively much less than those of the model based forecasts showing better skills of the value added forecast. As seen from Tables-8 and Figure-9, qualitative forecast for rainfall during the Post Monsoon season Winter season and Pre-Monsoon season of the study period, the model based forecasts were qualitatively very effective (>80%) and the value additions did not make any large difference.

1820				1	MONSO	ON 202	1				020				POS	TMON	SOON 2	2021			
HO		Mod	lel Fore	ecast		N	/alue A	dded	Foreca	st	HO		Mod	el Fore	cast		٧	alue A	dded	Foreca	st
WARI	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	WAR	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	31	31	28	26	29	31	31	29	29	32	A	3	3	3	3	5	4	4	3	3	5
B	3	3	4	5	2	1	0	3	3	0	8	2	2	3	3	4	1	2	4	3	2
с	0	0	1	3	3	1	1	1	2	1	c	2	2	0	0	0	1	1	0	0	0
D	0	0	1	0	0	1	2	1	0	1	D	20	20	21	21	18	21	20	20	21	20
MAT	31	31	29	26	29	32	33	30	29	33	MAT	23	23	24	24	23	25	24	23	24	25
RS	91.2	91.2	85.3	76.5	85.3	94	97.1	88.2	85.3	97.1	RS	85.2	85.2	88.9	88.9	85.2	92.6	88.9	85.2	88.9	92.6
HKS	0.0	0.0	0.2	-0.1	-0.1	0.5	1.0	0.2	-0.1	1.0	HKS	0.5	0.5	0.9	0.9	0.8	0.8	0.7	0.8	0.9	0.9
POD	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	0.9	1.0	POD	0.6	0.6	1.0	1.0	1.0	0.8	0.8	1.0	1.0	1.0
FAR	0.1	0.1	0.1	0.2	0.1	0.0	0.0	0.1	0.1	0.0	FAR	0.4	0.4	0.5	0.5	0.4	0.2	0.3	0.6	0.5	0.3
CSI	0.9	0.9	0.8	0.8	0.9	0.9	1.0	0.9	0.9	1.0	CSI	0.4	0,4	0.5	0.5	0.6	0.7	0.6	0.4	0.5	0.7
HSS	0.0	0.0	0.2	-0.1	-0.1	0.5	0.8	0.3	-0.1	0.7	HSS	0.5	0.5	0.6	0.6	0.6	0.8	0,7	0.5	0.6	0.8
RMSE	26.1	44.9	22.9	20.6	31.3	10.4	7.3	9.8	10.9	12.4	RMSE	16.5	9.3	12.2	13.4	10.4	3.7	1.4	5.2	1.3	1.8
					WINTE	R 2022					1000				PR	E MONS	OON 2	022			
HA		Mod	lel Fore	cast		V	alue A	dded	Foreca	st	1 A		Mod	el Fore	cast	1	V	alue A	dded	Foreca	st
WARD	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	WARD	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	16	16	16	16	16	16	16	16	16	16	N	27	27	27	27	27	27	27	27	27	27
A	2	1	1	2	1	2	1	1	2	1	A	0	2	1	0	0	3	1	1	1	0
8	0	2	2	0	3	1	1	2	0	2	8	2	2	4	3	4	4	2	2	3	3
c	0	0	0	0	0	0	0	0	0	0	c	1	1	1	2	1	2	2	1	0	1
D	14	13	13	14	12	13	14	13	14	13	D	24	22	21	22	22	18	22	23	23	23
MAT	16	14	14	16	13	15	15	14	16	14	MAT	24	24	22	22	22	21	23	24	24	23
RS	100	88	88	100	81	94	93.8	88	100	88	RS	89	89	81	81	81	78	85	89	89	85
HKS	1	0.9	0.9	1	0.8	0.9	0.93	0.9	1	0.9	HKS	-0	0.6	0.3	-0	-0	0.4	0.3	0.4	0.9	-0
POD	1	1	1	1	1	1	1	1	1	1	POD	0	0.7	0.5	0	0	0.6	0.3	0.5	1	0
FAR	0	0.7	0.7	0	0.8	0.3	0.5	0.7	0	0.7	FAR	1	0.5	0.8	1	1	0.6	0.7	0.7	0.8	1
CSI	1	0.3	0.3	1	0.3	0.7	0.5	0.3	1	0.3	CSI	0	0.4	0.2	0	0	0.3	0.2	0.3	0.3	0
HSS	1	0.4	0.4	1	0.3	0.8	0.64	0.4	1	0.4	HSS	-0	0.5	0.2	-0	-0	0.4	0.3	0.3	0.4	-0
RMSE	4	2.3	9.7	11	8.4	1.1	0.92	2	3.8	5.6	RMSE	0.7	0.9	2	0.8	1.3	1.2	0.8	1	0.9	0.6

Table 8: Verification of Forecasted rainfall (Model & Value added) for Wardha

Fig 9: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Wardha

3.1.9 Verification of Rainfall for Washim

As seen from Table-9 and Figure-10 that during the SW Monsoon season of the study period, the value added forecasts qualitative efficacy was almost at par or slightly above par as compared to the model based forecasts. From Table-9, it can however be seen that RMSE for all the 5 days w.r.t. value added forecast was comparatively less than those

of the model based forecasts. As seen from Table-9 and Figure-10, qualitative forecast for rainfall during the Post Monsoon season Winter season and Pre-Monsoon season of the study period, the model based forecasts were qualitatively very effective (about 80% and above) and the value additions did not make very large difference.

00000 2020

	L	1.			10.350	0.4 20.	21					L		0.00110	rus	1 MOP	1300.1	2021	1.1.2.1.1.1.1.1.1.1		
Ξ		Mod	lel Fore	cast			Value A	dded I	Forecas	at .	8		Moo	iel Fore	ecast			Value A	dded H	orecas	t.
WAS	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	WAS	Dayl	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	30	27	25	27	28	30	29	25	31	31	A	5	2	2	3	2	1	4	3	3	3
В	3	4	9	3	3	3	2	9	0	2	B	2	2	5	2	6	0	2	5	2	5
С	1	2	0	4	3	1	1	0	2	1	C	0	2	1	0	1	4	0	0	0	0
D	0	1	0	0	0	1	2	0	1	0	D	20	21	19	22	18	22	21	19	22	19
MAT	30	28	25	27	28	31	31	25	32	31	MAT	25	23	21	25	20	23	25	22	25	22
RS	\$8.2	\$2.4	73.5	79.4	82.4	91	91.2	73.5	94.1	91.2	RS	92.6	85.2	77.8	92.6	74.1	85.2	92.6	81.5	92.6	81.5
HKS	0.0	0.1	0.0	-0.1	-0.1	0.2	0.5	0.0	0.9	0.0	HKS	0.9	0.4	0.5	0.9	0.4	0.2	0.9	0.8	0.9	0.8
POD	1.0	0.9	1.0	0.9	0.9	1.0	1.0	1.0	0.9	1.0	POD	1.0	0.5	0.7	1.0	0.7	0.2	1.0	1.0	1.0	1.0
FAR	0.1	0.1	0.3	0.1	0.1	0.1	0.1	0.3	0.0	0.1	FAR	0.3	0.5	0.7	0.4	0.8	0.0	0.3	0.6	0.4	0.6
CSI	0.9	0.8	0.7	0.8	0.8	0.9	0.9	0.7	0.9	0.9	CSI	0,7	0.3	0.3	0.6	0.2	0.2	0.7	0.4	0.6	0.4
HSS	0.0	0.2	0.0	-0.1	-0.1	0.3	0.5	0.0	0.5	0.0	HSS	0.8	0.4	0.3	0.7	0.2	0.3	0.8	0.5	0.7	0.5
RMSE	26.4	30.0	13.9	18.8	18.9	15.9	12.5	13.4	14.6	11.0	RMSE	8.7	11.2	8.3	9.9	8.4	1.2	8.4	3.4	9.4	1.8
N					WINTI	ER 2022	2				N				PRI	MON	SOON	2022			
H		Mod	lel Fore	ecast			Value A	dded I	Forecas	t	H		Moo	lel Fore	ecast			Value A	dded I	forecas	4
WAS	Day1	Day2	Day3	Day4	Day5	Day1	Day2	Day3	Day4	Day5	WAS	Dayl	Day2	Day3	Day4	Day5	Dayl	Day2	Day3	Day4	Day5
N	16	16	16	16	16	16	16	16	16	16	N	27	27	27	27	27	27	27	27	27	27
A	1	1	0	0	0	1	1	0	1	1	A	0	0	0	0	0	0	0	0	0	0
B	1	1	1	1	1	0	1	1	0	1	B	1	3	4	1	4	0	3	2	3	3
С	1	0	1	1	1	0	0	1	1	1	С	0	0	1	0	0	0	0	1	0	0
D	13	14	14	14	14	15	14	14	14	13	D	26	24	22	26	23	27	24	24	24	24
MAT	14	15	14	14	14	16	15	14	15	14	MAT	26	24	22	26	23	27	24	24	24	24
RS	88	94	88	\$8	88	100	93.8	88	94	88	RS	96	89	- \$1	96	85	100	89	89	89	89
HKS	0.4	0.9	-0	-0	-0	1	0.93	-0	0.5	0.4	HKS	+	-	-0		-	-	-	-0		-
POD	0.5	1	0	0	0	1	1	0	0.5	0.5	POD	-	1.1	0		1	-	-	0		- 24 -
FAR	0.5	0,5	1	1	1	0	0.5	1	0	0.5	FAR	1	1	1	1	1	-	1	1	1	1
CSI	0.3	0.5	0	0	0	1	0.5	0	0.5	0.3	CSI	0	0	0	0	0	-	0	0	0	0
HSS	0.4	0.6	-0	-0	-0	1	0.64	-0	0.6	0.4	HSS	0	0	-0	0	0	-	0	-0	0	0
RMSE	1.8	3.3	4.4	6.8	5.2	0	1.4	1.4	3	2.9	RMSE	0.6	2.2	1.1	0.2	2.2	0	1.4	0.9	0.6	0.7

Table 9: Verification of Forecasted rainfall (Model & Value added) for Washim

Fig 10: Qualitative accuracy correct +usable (C+I) and Incorrect (I) for rainfall for Washim

3.1.10 Verification of Rainfall for Yeotmal

As seen in Table-10 and Figure-11, similar to all the other districts of Vidarbha, the forecast efficacy was better based on value addition as compared to the model based for all the 5 forecasted days for SW Monsoon season of the study period. From Table-10, it can be seen that RMSE for all the 5 days w.r.t. value added forecast was also much less than those of the model based forecasts. As seen from Table-10 and Figure-11, the qualitative forecast for rainfall during the Post

Monsoon season of 2021 were about 80% and above for both model based and value added forecast and the qualitative efficacy of both model based and value added forecasts were similar. It is also evident from Tables-10 and Figure-11, the model based forecasts were qualitatively very effective and the value additions did not make any large difference during winter season as well as the Pre Monsoon season of the study period.

T		MONSOON 2021									TV				POS	T MON	SOON	2021			
IN		Mo	del For	ecast		1	Value 2	dded 1	Forecas	t .	N		Mo	del For	cast			Value A	dded I	orecas	t
YEO	Day1	Day 2	Day3	Day4	Day5	Day1	Day 2	Day3	Day4	Day5	YEO	Day1	Day2	Day 3	Day4	Days	Day1	Day2	Day3	Day4	Day5
N	34	34	34	34	34	34	34	34	34	34	N	27	27	27	27	27	27	27	27	27	27
A	31	33	30	31	30	31	33	31	32	32	A	5	5	5	4	4	5	5	6	3	4
В	3	1	3	2	1	1	1	0	1	0	B	5	3	4	3	6	3	2	3	3	4
С	0	0	1	1	2	0	0	3	1	1	C	0	0	1	0	0	0	0	0	1	0
D	0	0	0	0	1	2	0	1	0	1	D	17	19	17	20	17	19	20	18	20	19
MAT	31	33	30	31	31	33	33	32	32	33	MAT	22	24	22	24	21	24	25	24	23	23
RS	91.2	97.1	\$8.2	91.2	91.2	97	97.1	94.1	94.1	97.1	RS	81.5	88.9	81.5	88.9	77.8	88.9	92.6	\$8.9	85.2	85.2
HKS	0.0	0.0	0.0	0.0	0.4	0.7	0.0	0.9	0.0	1.0	HKS	0.8	0.9	0.6	0.9	0.7	0.9	0.9	0.9	0.6	0.8
POD	1.0	1.0	1.0	1.0	0.9	1.0	1.0	0.9	1.0	1.0	POD	1.0	1.0	0.8	1.0	1.0	1.0	1.0	1.0	0.8	1.0
FAR	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	FAR	0.5	0.4	0.4	0.4	0.6	0.4	0.3	0.3	0.5	0.5
CSI	0.9	1.0	0.9	0.9	0.9	1.0	1.0	0.9	0.9	1.0	CSI	0.5	0.6	0.5	0.6	0.4	0.6	0.7	0.7	0.4	0.5
HSS	0.0	0.0	0.0	0.0	0.4	0.8	0.0	0.4	0.0	0.7	HSS	0.6	0.7	0.5	0.7	0.5	0.7	0.8	0.7	0.5	0.6
RMSE	22.6	44.2	25.8	21.8	33.9	12.4	13.3	11.8	11.7	12.5	RMSE	9.0	13.0	12.8	9.8	13.4	3.4	2.6	2.3	4.2	3.0
H					WINT	ER 202	2				H				PRI	MON	SOON	2022			
MA		Mo	del For	ecast			Value A	dded 1	Forecas	a l	MA	-	Mo	del For	cast			Value A	dded I	orecas	1
IO	-	-	1 -	+	1 10	-		1 100	+	1 40	6	-	-	1 10	+		-	1	6	+	1 90
AB	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	AB	Day	Day	Day	Day	Day	Day	Day	Day	Day	Day
N	16	16	16	16	16	16	16	16	16	16	N	27	27	27	27	27	27	27	27	27	27
A	2	2	1	2	2	2	1	1	2	1	A	1	1	1	3	0	3	0	0	1	0
B	1	2	3	0	2	0	1	2	0	2	B	3	5	6	4	8	3	3	2	3	3
C	0	0	1	0	0	0	1	1	0	1	C	2	1	2	0	1	0	2	3	2	1
D	13	12	11	14	12	14	13	12	14	12	D	21	20	18	20	18	21	22	22	21	23
MAT	15	14	12	16	14	16	14	13	16	13	MAT	22	21	19	23	18	24	22	22	22	23
RS	94	88	75	100	88	100	87.5	81	100	81	RS	81	78	70	85	67	89	81	81	81	85
HKS	0.9	0.9	0.3	1	0.9	1	0.43	0.4	1	0.4	HKS	0.2	0.3	0.1	0.8	-0	0.9	-0	-0	0.2	-0
POD								1	0.5	POD	0.3	0.5	0.3	1	0	1	0	0	0.3	0	
FAR	0.3 0.5 0.8 0 0.5 0 0.5 0.7 0							0.7	FAR	0.8	0.8	0.9	0.6	1	0.5	1	1	0.8	1		
CSI	0.7 0.5 0.2 1 0.5 1 0.33 0.3 1							0.3	CSI	0.2	0.1	0.1	0.4	0	0.5	0	0	0.2	0		
HSS	0.8 0.6 0.2 1 0.6 1 0.43 0.3 1							0.3	HSS	0.2	0.2	0.1	0.5	-0	0.6	-0	-0	0.2	-0		
RMSE	6.5	9.9	9.8	8.7	9.6	2	2.58	3.6	2.4	3.5	RMSE	1	23	2.8	7.3	2.2	1.1	1	0.9	0.8	0.8

Table 10: Verification of Forecasted rainfall (Model & Value added) for Yeotmal

Fig 11: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for rainfall for Yeotmal

3.2 Verification Analysis for Maximum and Minimum temperatures

3.2.1 Verification of temperatures (Maximum and Minimum) for Akola

The maximum temperatures as seen from Figure-12 during the SW monsoon season model based forecasts showed better qualitative efficacy in days 2, 3 and 4. The value added forecast efficacy was marginally less in these days. However, for days 1 & 5, value added forecast efficacy was slightly better than the model based one. During winter season also, the model based forecasts showed better efficacy in days 4 & 5, and during the other 3 days, the value additions were at par or marginally better. During the Pre-Monsoon and Post-Monsoon seasons of the study period, the model based forecasts were qualitatively very effective (>80%) and the value additions did not make any large difference.

Fig 12: Qualitative accuracy correct +usable (C+I) and Incorrect (I) for maximum Temperature for Akola

The minimum temperatures as seen from Figure-13 show that for the SW Monsoon, Post-Monsoon and Pre-Monsoon seasons of the study period, the qualitative efficacy of the value added forecasts were much better than that of the model based forecasts. However, for day 5 of the post-monsoon season of the study period, the model based forecast was slightly better. During winter season of the study period, the model based forecasts were slightly better than the value added for days 2 & 5. However, for days 1, 3 & 5, the value added forecasts were significantly better.

Fig 13: Qualitative accuracy correct +usable (C+I) and Incorrect (I) for minimum Temperature for Akola

.2.2 Verification of temperatures (Maximum and Minimum) for Amravati As seen from the Figure-14, the qualitative efficacy of the model based forecasts for maximum temperature were better for all the 5 forecasted days as compared to the value added forecasts during the Postmonsoon season of the study period. During the SW monsoon

season, value added forecasts showed better efficacy for all the days. During the Winter season, day 2 and during the premonsoon season days 2 & 4 the model forecasts were better. For the rest of the days, value added forecasts exhibited better skills.

Fig 14: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for maximum Temperature for Amravati

As evident from Figure-15, the qualitative efficacy of the value added forecasts for minimum temperature were

comparatively much better than that of the model based forecasts for all the 5 forecasted days during all the season.

Fig 15: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) for minimum Temperature for Amravati

3.2.3 Verification of temperatures (Maximum and Minimum) for Buldhana It can be seen from the Figure-16 that the qualitative efficacy

of the value added forecasts for maximum temperature were

comparatively much better than that of the model based forecasts for all the 5 forecasted days during all the season.

Fig 16: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For maximum Temperature for Buldhana

As seen from the Figure-17, the qualitative efficacy of the value added forecasts for minimum temperature were better for all the 5 forecasted days as compared to the model based forecasts during the Pre-monsoon season of the study period.

During the SW monsoon and winter seasons, except day 2, value added forecasts showed better efficacy for all other days. During the post-monsoon season days 3, 4 & 5 the model forecasts were better.

Fig 17: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For minimum Temperature for Buldhana

3.2.4 Verification of temperatures (Maximum and Minimum) for Chandrapur

It can be seen from the Figure-18 that the qualitative efficacy of the model based forecasts for maximum temperature were comparatively better or at par with that of the value added forecasts for all the 5 forecasted days during SW monsoon. During the other three seasons, the model based forecasts were qualitatively very effective (>80%) though the value added forecasts were slightly better.

Fig 18: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For maximum Temperature for Chandrapur

As seen from the Figure-19 the qualitative efficacy of the value added forecasts for minimum temperature were comparatively much better than that of the model based forecasts for all the 5 forecasted days during SW monsoon,

winter and pre-monsoon seasons of the study period. However, during post-monsoon season, the model based forecasts were better in days 2, 3, 4 & 5.

Fig 19: Qualitative accuracy correct + usable (C+I) and Incorrect (I) For minimum Temperature for Chandrapur

3.2.5 Verification of temperatures (Maximum and Minimum) for Gadchiroli

It can be seen from the Figure-20 that the qualitative efficacy of the value added forecasts for maximum temperature were comparatively much better than that of the model based forecasts for all the 5 forecasted days during SW monsoon, Post-monsoon and winter seasons of the study period. However, during pre-monsoon season, the model based forecasts were much better than the value added forecasts for all the 5 forecasted days.

Fig 20: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For maximum Temperature for Gadhchiroli

As seen from the Figure-21 that the qualitative efficacy of the value added forecasts for minimum temperature were comparatively much better than that of the model based forecasts for all the 5 forecasted days during SW monsoon

and post-monsoon seasons of the study period. However, during post-monsoon season, the model based forecasts were better in days 1, 2 & 5 and during the winter season the model based forecast was better in day 5.

Fig 21: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For minimum Temperature for Gadhchiroli

3.2.6 Verification of temperatures (Maximum and Minimum) for Gondia It can be seen from the Figure-22 that the qualitative efficacy

of the value added forecasts for maximum temperature were

comparatively better than that of the model based forecasts for all the 5 forecasted days for all the seasons.

Fig 22: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For maximum Temperature for Gondia

As seen from the Figure-23 that the qualitative efficacy of the value added forecasts for minimum temperature were comparatively better than or at par with that of the model

based forecasts for all the 5 forecasted days during all the seasons.

Fig 23: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For minimum Temperature for Gondia

3.2.7 Verification of temperatures (Maximum and Minimum) for Nagpur It can be seen from the Figure-24 that the qualitative efficacy

of the value added forecasts for maximum temperature were

comparatively better or at par with that of the model based forecasts for all the forecasted days during all the season except for day 5 during the post-monsoon season.

Fig 24: Qualitative accuracy correct +usable (C+I) and Incorrect (I) For maximum Temperature for Nagpur

As seen from the Figure-25, the qualitative efficacy of the value added forecasts for minimum temperature were

comparatively much better than that of the model based forecasts for all the 5 forecasted days during all the season.

Fig 25: Qualitative accuracy correct +usable (C+I) and Incorrect (I) For minimum Temperature for Nagpur

3.2.8 Verification of temperatures (Maximum and Minimum) for Wardha

It can be seen from the Figure-26 that the qualitative efficacy of the value added forecasts for maximum temperature were

comparatively better as compared to that of the model based forecasts for all the forecasted days during all the season except for day 2 during the SW-monsoon season.

Fig 26: Qualitative accuracy correct +usable (C+I) and Incorrect (I) For maximum Temperature for Wardha

As seen from the Figure-27, the qualitative efficacy of the value added forecasts for minimum temperature were comparatively better as compared to that of the model based

forecasts for all the forecasted days during all the season except for day 4 during the post-monsoon season.

Fig 27: Qualitative accuracy correct + usable (C+I) and Incorrect (I) For minimum Temperature for Wardha

3.2.9 Verification of temperatures (Maximum and Minimum) for Washim It can be seen from the Figure-28 that the qualitative efficacy

of the value added forecasts for maximum temperature were

comparatively much better than that of the model based forecasts for all the 5 forecasted days during all the season.

Fig 28: Qualitative accuracy correct+ usable (C+I) and Incorrect (I) For maximum Temperature for Washim

As seen from the Figure-29, the qualitative efficacy of the value added forecasts for minimum temperature were also

comparatively much better than that of the model based forecasts for all the 5 forecasted days during all the season.

Fig 29: Qualitative accuracy correct + usable (C+I) and Incorrect (I) For minimum Temperature for Washim

3.2.9 Verification of temperatures (Maximum and Minimum) for Yeotmal

It can be seen from the Figure-30 that the qualitative efficacy of the value added forecasts for maximum temperature were comparatively much better than that of the model based forecasts for all the 5 forecasted days during SW monsoon, Post-monsoon and winter seasons of the study period. However, during pre-monsoon season, the model based forecasts were much better than the value added forecasts for all the 5 forecasted days.

Fig 30: Qualitative accuracy correct + usable (C+I) and Incorrect (I) For maximum Temperature for Yavatmal

As seen from the Figure-31, the qualitative efficacy of the value added forecasts for minimum temperature were comparatively better as compared to that of the model based

forecasts for all the forecasted days during all the season except for day 3 during the post-monsoon season.

Fig 31: Qualitative accuracy correct +usable (C+I) and Incorrect (I) For minimum Temperature for Yavatmal

4. Summary and Conclusions

The results revealed that for rainfall, the value added forecast accuracy was much better than that of the model based forecast almost all the districts of Vidarbha for all the 5 forecasted days. However, both model and accuracy were mostly less than 50% during SW Monsoon season, the value added forecasts faring marginally better. For Maximum and Minimum temperatures, though the value added forecasts accuracy was better than those of the model based forecasts for most of the districts in all the four seasons, the model based forecasts were better for few districts. Improvement in value added forecast accuracy during monsoon season will prove much more beneficial for the farming community to plan during various stages of crop growth, right from sowing till reaping.

5. Acknowledgements

The authors express their sincere thanks to Dr. Mrutyunjay Mohapatra, Director General of Meteorology, India Meteorological Department for his encouragement and support for carrying out this research work. The authors are also thankful to the India Meteorological Department, New Delhi for the timely uploading Model data on a daily basis.

6. References

- 1. Rathore LS, Roy Bhowmik SK, Chattopadhaya N. Integrated Agro-advisory Services of India, Challenges and opportunities of Agro-meteorology; c2011. p. 195-205 (Spinger publication).
- 2. Roy Bhowmik SK, Das AK. Rainfall Analysis for Indian monsoon region using the merged rain gauge observations and satellite estimates: Evaluation of monsoon rainfall features, Journal of Earth System Science. 2007;116(3):187-198.
- 3. Rana RS, Sood R, Aditya Shekhar J. Validation of medium range weather forecasts in sub-temperate and

sub-humid climate of western Himalayas. Ind. J Agric. Sc. 2013;8(12):81-87.

- Manjappa K, Yeledalli SB. Validation and assessment of economic impact of agro advisories issued based on medium range weather forecast for Uttara Kannada district of Karnataka. Karn. J Agric. Sci. 2013;26(1):36-39.
- Chattopadhyay N, Roy Bhowmik SK, Singh KK, Ghosh K, Malathi K. Verification of district level weather forecast. Mausam. 2016 Oct;67(4):829-840.