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Study of axis symmetric shapes of sessile drops 

 
Rajeev Ranjan Deo Pandey, Sumit Kaur and Binay Prakash Akhouri 
 
Abstract 

By fitting the Laplacian equation of capillarity to the dimensions of sessile drops, axis symmetric drop 

shape analysis (ADSA) techniques are presented for the computations of any one (the contact angle, the 

interfacial tension, and the radius of curvature at the drop apex) if the values of two other are known. 

With the change of area of pendant drops, the change in Gibb's energy and the change in work done are 

computed. Numerically generated drop profiles used to demonstrate the accuracy and applicability of the 

method. 
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Introduction 

Surface tension is the boundary tension at a liquid-gas interface. The boundary tension at a 

liquid–liquid contact is termed as interfacial tension. The determination of liquid-gas surface 

tension and liquid-liquid interfacial tension is essential in a number of scientific and industrial 

fields. The capillary rise method [1-4], the do Noisy ring method [5-7], the Wilhelmy plate 

method [8, 9], the height of a meniscus on a vertical plane method [10, 27], the spinning drop 

method [11, 12], the maximum bubble pressure method [13, 14], the drop weight method [15,16], and 

the drop or bubble shape analysis method [1-16] have all been developed to measure 

surface/interfacial tension. Among these methods, drop shape analysis method has a number of 

advantages. The measurement of interfacial tension using drop form methods is powerful, 

diverse, and adaptable. While studying liquid-fluid menisci, Neumann and colleagues 

established the axis symmetric drop shape analysis (ADSA) numerical technique [17-18] for 

calculating surface and interfacial tensions from the shape of drops or bubbles. 

Today, ADSA [17-18] has been widely used in a variety of applications, including cellular 

biomechanics and oil recovery. Bash forth and Adams [20] developed sessile drop profiles for 

different surface tensions and radii of curvature at the apex of the drop, which was the first 

study in the field of axis symmetric drops analysis. Maze and Burnet [21] devised a more 

precise approach for determining interfacial tensions based on the shape of sessile drops. 

Further development of DSA techniques [17-36] are ADSA-P [17-18], ADSA-NA (No apex) [17], 

ADSA-CSD (constrained sessile drop) [17], ADSA-D(diameter) [17], ADSA-HD (height and 

diameter) [22], ADSA –TD( two diameter) [30], ADSA-CB (captive bubble) [17-20], and ADSA-

EF (electric field) [17]. The ADSA-EFis applicable to pendant and sessile drops/bubbles. For 

studying accuracy of drop shape techniques the geometrical shape parameters and physical 

dependence of shape parameters are primarily investigated. 

In order to analyse physical dependence of shape parameters, the limitations of four drop 

shapes categories are principally presented which are, volume-radius limited [18], Volume-

angled limited [18], volume-radius-radius limited [18] and the volume-radius-angle limited [18]. 

For measuring interfacial tension, however, the approaches indicated above are more powerful, 

diverse, and adaptable. 

For determining interfacial tension, a variety of approaches have been presented. There is 

currently a large body of literature documenting the new approaches as well as enhancements 

to old methods. However, only a few are of outstanding importance. We will discuss among 

them the most fundamental method i.e., the method for computing the interfacial tension from 

the shapes of sessile drops. 
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(i) A pendant drop 

 

 
 

(ii) A sessile drop 

 

 
 

(iii) A pendant drop with a cylindrical tip 

 

 
 

(iv) A sessile drop in a capillary tube 
 

Fig 1: Gives apresentation of a pendant and a sessile drop. 

Pendant drops results (i) when the liquid drop is hanging from 

a flat, horizontal surface, or (ii) from a vertical cylindrical tip. 

Sessile drops are shaped like an oblate spheroid. They are 

formed (iii) when a drop of liquid settles on a flat, horizontal 

plate, or (iv) The liquid surface in a capillary tube also has the 

sessile shape. Pendant drops correspond to a prolate spheroid. 

The balance between surface tension and extrinsic forces, 

such as gravity, determines the shape of the drop/bubble. 

Gravity deforms the drop, elongating a pendant drop or 

flattening a sessile drop, whilst surface tension tries to round 

it. When the surface tension effect is substantially greater than 

the gravitational influence, the shape of both pendent and 

sessile drops/bubbles tends to become spherical. 

Theoretically, each drop shape corresponds to a constant 

surface tension value. A little change in surface tension 

generates a large change in shape for well-defined geometries. 

A considerable change in surface tension, on the other hand, 

generates just a modest change in shape for approximately 

spherical drop/bubble geometries. The connection between 

drop shape and surface tension lies at the heart of drop shape 

methods. The Laplace equation of capillarity includes this 

information. The drop shapes as in Figure 2 can be generated 

using a Laplace equation. 

 

Theory 

When a drop of liquid with interfacial tension γ is placed on a 

non-wetting solid surface, the drop assumes a shape that is 

determined by the contact angle c  that the liquid makes at 

the three-phase contact line, in accordance with the Young–

Dupré equation (see) [19]. Under static conditions, the drop 

shape must also satisfy the Young–Laplace equation of 

capillarity [37-38], which describes the mechanical equilibrium 

conditions for two homogeneous fluids separated by an 

interface: 

 

1 2

1 1
P

R R
 
 

  
      (1) 

 

Where 1R
 and 2R

 are the two principal radii of curvature,


 

is the liquid –fluid interfacial tension, and P  is the pressure 

difference across the interface. In the absence of external 

forces other than gravity, the pressure difference is a linear 

function of the elevation: 

 

 0P P gz   
    (2) 

 

Where 0P
 is the pressure difference at a reference plane,


 is the density difference between the two bulk phase,

g
 

is the gravitational acceleration, and z is the vertical height of 

the given point on the drop surface, measured from the 

reference level. The integration of the Laplace equation (1) is 

straightforward only for a cylindrical meniscii, i.e., menisci 

for which one of the principal radii of curvatures is zero. For a 

general irregular meniscus, numerical integration would be 

very difficult. For the specific case of axis-symmetric drops, 

e.g. sessile drops and pendant drop drops, numerical 

procedures have been devised [17-18]. Fortunately obtaining 

axial symmetry is not difficult for most sessile drop and 

pendant drop systems. For the axial symmetry of the 
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interface, the curvature at the apex is constant in all directions 

and the two radii of curvature are equal, i.e, 

 

0 1 2

1 1 1
b

R R R
  

    (3) 

 

At 0s  , where 0R  and b are the radius of curvature and 

the curvature at the origin( 0x   and 0z   as shown in 

Fig.2) respectively. Then, from equation (1), the pressure 

difference at the origin can be expressed as 

 

0 2P b 
     (4) 

 

Using equation (1), (2) and(3) we have the following form of 

Laplace equation: 

 

 
1 2

1 1
2b gz

R R
  
 

   
     (5) 

 

 

 
 

Fig 2: Axis symmetric co-ordinate system 

 

In this work, the shape of an axis-symmetric sessile drop is 

computed for given


, 01b R
, and contact angle c . The 

liquid is taken to be water and the surrounding fluid is air. For 

computational purposes it is convenient to work with arc 

length s along the curve and the turning angle


, which is 

defined in terms of the local slope by 
/ tandz dx 

. 

Introducing 


 and the arc length s (i.e.,
2 2ds dx dy 

) as 

new variables along the interface allows the Young–Laplace 

equation to be expressed as
2 sind ds b cz x   

with 
cosdx ds 

, 
sindy ds 

, and 
2dA ds x

and 
2 sindV ds x 

; where V is the volume and A the 

surface area of the drop. Thus for a given 


and c , 

specifying the reference curvature b  is equivalent to 

specifying the volume or surface area of the drop. V (or A) 

decreases monotonically with increasing b . The capillary 

constant c has positive values for sessile drops and negative 

values for pendant drop and is expressed as 
( )c g 

. 

Here, 
997.38 

 Kg/m3 and 
29.8 /g m s

. 

 

Result and discussion 

In numerically generated Figures 3(a)-3(g), we find that the 

curved surfaces changes, i.e., either moves outwards or 

inwards depending mainly on the values of the three 

parameters viz the contact angle c , the interfacial tension 


, 

and the radius of curvature 0R
 at the drop apex. The 

parameterizations of the different quantities are as follows: 

0 4s  , 
00 180c 

, 0 72  , 00.8 1/ 0R  
 

and 0.6 6x   and 
0 0.37y  

. For numerical 

evaluation of the drops the initial conditions used were set as:

(0) 0, (0) 0, (0) 0, (0) 0z x V      and (0) 0.A   

 
0

050, 30 ,1 5.05c R      
 

 
 

Fig (a) 
 
0

050, 50 ,1 5.05c R    
 

 

 
 

Fig (b) 

 
0

050, 60 ,1 5.05c R    
 

 

 
 

Fig (c) 

 

 

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0

0.088

x cm

z
c
m

0.10 0.05 0.00 0.05 0.10

0

0.026

x cm

z
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0

050, 90 ,1 5.05c R    
 

 

 
 

Fig (d) 

 
0

050, 120 ,1 5.05c R    
 

 

 
 

Fig (e) 

 
0

050, 150 ,1 5.05c R    
 

 
 

Fig (f) 

 
0

050, 180 ,1 5.05c R    
 

 

 
 

Fig (g) 
 

Fig 3 (a) to 3(g): Shapes of an axis-symmetric sessile drop with 

varying contact angles (see Table1) 

 

Table 1: Volume, area, height and contact radius of a sessile drop with varying c  
 

01/ R
 

(
1m

) 

 /N m  c  in degree 
Volume

8 310 m   

Area
6 210 m   

Height
410 m   

Contact radius 
410 m   

-5.05 50 30 0.0387 3.1490 2.5605 9.6760 

  50 0.2270 7.8344 6.4761 14.3705 

  60 0.3960 10.5424 8.7917 15.9948 

  90 0.0775 18.7733 16.0047 17.9871 

  120 1.6625 25.7547 22.0932 16.4049 

  150 1.92402 30.6558 25.8273 12.7370 

  180 1.96976 33.4525 26.9333 8.82637 

 

Table 2: Volume, area, height and contact radius of a sessile drop with varying c  

 

01/ R
 

1m

 


 

/N m  

c  
in degree 

Volume 
8 310 m   

Area 
6 210 m   

Height 
410 m   

Contact radius 
410 m   

-1.05 30 30 1.24664 34.2627 7.0566 32.1440 

  50 3.8739 56.9196 13.3310 39.8270 

  60 5.4525 66.3540 16.3274 40.9361 

  90 10.1674 89.1619 24.2758 44.2037 

  120 13.7148 106.097 30.1816 42.6894 

  150 15.5983 119.0020 33.7011 39.7011 

  180 16.1032 129.013 34.8199 35.1444 

 50 30 1.7377 41.9625 8.1797 35.5154 

  50 5.9050 73.8862 16.0693 45.604 

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

0

0.16

x cm

z
c
m

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

0

0.221

x cm

z
c
m

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

0

0.258

x cm

z
cm

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

0

0.269

x cm

z
cm
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  60 85.1153 87.5740 19.8907 47.8497 

  90 16.4582 121.1130 30.0092 50.7571 

  120 22.4606 146.1000 37.691 48.8089 

  150 25.5937 164.937 42.2066 44.3653 

  180 26.4094 179.238 43.6318 39.1787 

 70 30 2.0209 47.0563 8.89739 37.5716 

  50 7.6027 86.3779 17.9916 48.6733 

  60 11.1558 103.6440 22.4532 51.8126 

  90 22.1749 146.4450 34.4382 55.2248 

  120 30.5317 178.4490 43.3935 52.9287 

  150 34.8386 202.391 48.7065 47.7024 

  180 35.9347 220.2650 50.3743 41.6424 

 

Table 3: Volume, area, height and contact radius of a sessile drop with varying c  
 

01/ R
 

1m

 


 

/N m  

c  
in degree 

Volume 
8 310 m   

Area 
6 210 m   

Height 
410 m   

Contact radius 
410 m   

-4.15 30 30 0.06300 4.3845 2.9750 11.4255 

  50 0.3302 10.1659 7.1347 16.4391 

  60 0.5478 13.2374 9.4459 18.0624 

  90 1.34164 21.8473 16.2033 19.9554 

  120 1.98351 28.7095 21.5654 18.5730 

  150 2.2846 33.5993 24.7684 15.4281 

  180 2.34681 36.7349 25.7347 11.9698 

 50 30 0.06735 4.56585 3.0669 11.6540 

  50 0.37900 11.0662 7.6045 17.1056 

  60 0.64807 14.7000 10.2221 18.9426 

  90 1.6888 25.3683 18.1529 21.1471 

  120 2.5566 34.1598 24.6570 19.4636 

  150 2.9527 40.3617 28.5901 15.6017 

  180 3.0276 44.0979 29.7633 11.4298 

 70 30 0.0694 4.6509 3.1098 11.7597 

  50 0.4052 11.5330 7.8454 17.4388 

  60 15.4924 15.4924 10.6368 19.3970 

  90 1.9067 27.4706 19.2979 21.7914 

  120 2.9342 37.5878 26.5780 19.9008 

  150 3.3947 44.6939 31.0327 15.5253 

  180 3.47622 48.7816 32.3533 10.8519 

 

Table 4: Volume, area, height and contact radius of a sessile drop with varying c  
 

01/ R
 

1m

 


 

/N m  

c  
in degree 

Volume 
8 310 m   

Area 
6 210 m   

Height 
410 m   

Contact radius 
410 m   

-9.55 30 30 0.00595 0.9024 1.3792 5.1783 

  50 0.03691 2.3227 3.5797 7.8090 

  60 0.06622 3.1830 4.9286 8.7544 

  90 0.19294 5.9535 9.3325 9.9570 

  120 0.3076 8.4394 13.2684 8.92508 

  150 0.3572 10.1833 15.7755 6.4575 

  180 0.3646 11.0704 16.5149 3.8755 

 50 30 00.0060 0.9104 1.38852 5.2008 

  50 0.0382 2.3750 3.6407 7.8902 

  60 0.0694 3.2799 5.0428 8.8726 

  90 0.2090 6.2774 9.7285 10.1444 

  120 0.3391 9.0550 14.0570 9.0029 

  150 0.3947 11.0136 16.8967 6.2015 

  180 0.4020 11.9366 17.7407 3.2793 

 70 30 0.00608 9.1395 1.39256 5.2106 

  50 0.0388 2.39861 3.6681 7.9364 

  60 0.0709 3.32446 5.0950 8.9261 

  90 0.2169 6.4342 9.9195 10.2315 

  120 0.3553 9.3666 14.4572 9.0308 

  150 0.4139 11.4444 17.4914 6.0320 

  180 0.4211 12.3790 18.4026 2.8930 

 

 

 

http://www.chemijournal.com/


 

~ 138 ~ 

International Journal of Chemical Studies http://www.chemijournal.com 

 

Any plane’s interaction with the curved surface generates a 

two-dimensional curvature containing one of the two 

independent radii of the curved surface ( 1R  and 2R ). If the 

curved surface becomes a little larger and moves by an 

amount of dz , the new position of the surface will be formed. 

Therefore, there will be changes in surface dimensions x

(abscissa),
y

(ordinate) and z (normal coordinate to paper 

plain) to x dx ,
y dy

 and z dz  amounts. 

Consequently, the changes in area, Gibbs free energy, and 

work will be: 

 

( )( )A x dx y dy xy xdy ydx dxdy xdy ydx         
     (6) 

 

( )dG xdy ydx 
            (7) 

 

( )W PdV Pxydz xdy ydx    
          (8) 

 

In table 1, it can easily be observed that the contact radius 

increases when the contact angle values increase from 300 to 

900 and decreases when the contact angle value decreases 

from 900 to 1800 for 01 5.05R   1( )m

, 50  ( )N m . 

In table2-4, it can also be observed that the same is true for 

every set of 01 R 1( )m
, ( )N m  and c (in degree). We 

can also calculate the change in Gibb’s energy by using 

equation (6) and (7). In table 1, the change in area at two 

contact angles 300 and 900is
6 6 2(18.7733 3.1490) 10 15.624 10 m    

. 

Similarly, the change in area at two contact angles 900 and 

1800 is 
6 6 2(33.4525 18.7733) 10 14.699 10 m     . Hence, 

the change in Gibbs energy for the two cases of contact angles 

is 
678.90 10 Nm   and

674.23 10 Nm  . Bash forth and 

Adams [20] derived the theoretical form of sessile or pendant 

drop and calculated tables of drop contours. The interfacial 

tension of a sessile or a pendant drop was determined by 

matching the experimentally measured drop profile to a 

theoretical drop contour. However, the visual comparison of 

drop profiles was time-consuming, tedious and subjective. 

 

Conclusion 

The surface energy of the solid sample may be calculated 

using two parameters: surface energy and especially the 

contact angle of the liquid droplet. It has also been discovered 

that the sessile drop analysis approach is useful for measuring 

contact angles. The change in Gibb's energy is determined 

using volume and area calculations. The significance of these 

computations can be seen from the concept of interfacial 

tension. By definition the interfacial tension is the increase in 

Gibb’s free energy per increase of the surface area at constant

T , P  and iN
. 
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