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Abstract 

Modern agriculture has been largely successful in meeting the energy needs of poor populations in 

developing countries. In the past 40 years, agricultural research has placed increased cereal production at 

its center. Recently, however, there has been a shift: agriculture must now not only produce more calories 

to reduce hunger, but also more nutrient-rich food to reduce hidden hunger. One in three people in the 

world suffer from hidden hunger, caused by a lack of minerals and vitamins in their diets, which leads to 

negative health consequences. Biofortification is a process of improvement of nutritional profile of plant-

based foods through agronomic interventions, genetic engineering, and conventional plant breeding. 

Biofortification through agronomic approaches can be achieved by applying mineral fertilizers to the soil, 

foliar fertilization and soil inoculation with beneficial microorganisms. Biofortification through genetic 

engineering is an alternative approach when variation in the desired traits is not available naturally in the 

available germplasm, a specific micronutrient does not naturally exist in crops, and/or modifications 

cannot be achieved by conventional breeding. 
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Introduction 

Biofortification is a process of increasing the density of vitamins and minerals in a crop 

through plant breeding, transgenic techniques, or agronomic practices. Biofortified staple 

crops, when consumed regularly, will generate measureable improvements in human health 

and nutrition. Humans require at least 49 nutrients to meet their metabolic needs and to be 

healthy (Grantham et al., 1999) [18]. Some are required in large amounts such as carbohydrates, 

fats, proteins, vitamins, minerals such as N, K, P, Ca, Mg, S others such as Fe, Zn, Cu, I and 

Se, are required in trace amounts because higher concentrations can be harmful. Inadequate 

consumption will result in adverse metabolic disturbances leading to Sickness, Poor health, 

lower worker productivity, learning disabilities in children Increased morbidity, Increased 

mortality rates, High healthcare costs, Diminishing human potential, Diminishing national 

economy. FAO recommendation of nutrient intakes for males and females between ages of 25 

and 50 years: Ultimately, these mineral elements enter the food chain through plants. The 

mineral elements most frequently lacking in human diets are Fe, Zn and I. It is estimated that, 

of the world’s 6 billion people, 60–80% are Fe deficient, 30% are Zn deficient, 30% are I 

deficient and about 15% are Se deficient (Frossard et al., 2000). 

The reasons for malnutrition are: Crop production in low mineral Phyto available areas and 

consumption of staple crops with inherently low tissue mineral concentration. These 

deficiencies are caused by diets characterized by high intakes of staple foods but low intakes 

of vegetables, fruits, and animal and fish products, which are rich sources of minerals. 

Traditional interventions to address mineral malnutrition have focused on supplementation, 

food fortification and dietary diversification. For various reasons, none of these have been 

universally successful. They require safe delivery systems, stable political policies, appropriate 

social infrastructures and continued investment. Recently, a complimentary solution to mineral 

malnutrition termed ‘bio-fortification’ has been proposed. 

Bio-fortification has been defined as the process of increasing the bio-available concentrations 

of essential elements in edible portions of crop plants through agronomic intervention or 

genetic selection. 
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Fig 1: Show the transgenic agronomy and breeding 

 

Biofortified crops generated by different approaches: 

Genetic engineering (transgenic), agronomic and breeding. 

Staple cereals, most common vegetables, beans, and fruits 

have been targeted by all three approaches. Some crops have 

been targeted by only one or two approaches depending on its 

significance and prevalence in the daily human diet. 

Cereals have been biofortified in largest number by all three 

biofortification approaches. Legumes and vegetables have 

also been targeted by all the approaches in almost equal 

percentage. Transgenic approach covers highest number of 

crops. Oilseed crops have been mainly targeted by transgenic 

approaches due to limited genetic variability. 

 

 
 

Fig 2: Percentage of different crops biofortified by different 

approaches 

 

Biofortification through Agronomic approach 

Given the limitations of conventional nutritional 

interventions, biofortification has been introduced an effective 

long-term approach for nutritional enhancement of crop plants 

(Zhu et al., 2007). Breeding varieties with an increased ability 

to acquire mineral elements is being seriously attempted (Zhu 

et al., 2007; White and Broadley, 2009) [48]. On the other 

hand, biofortification of food crops can be achieved easily and 

rapidly through the application of mineral fertilizers (Prasad 

et al., 2014) [36]. In reality, breeding and agronomic 

approaches can be complementary to each other. There are 4 

major ways of achieving this, namely seed priming, seed 

coating, soil applications of micronutrient fertilizers and foliar 

application of fertilizers. The available information is briefly 

reviewed. 

 

Seed priming 

Seed priming is the practice of treating the seeds with 

micronutrients by soaking in nutrient solution of a specific 

concentration for a specific time or duration. Seed priming of 

chickpea seeds in a 0.05% solution of zinc sulphate 

heptahydrate (ZnSO4.7H2 O) was found quite effective and 

on an average enhanced chickpea yield by 19% compared to 

non-primed seeds (Harris et al., 2008) [19]. Additionally, seed 

priming also enhanced Zn concentration in chickpea seed by 

29%, which is a fairly sizeable increase. Seed priming with 

zinc is helpful in improving crop emergence, stand 

establishment, plant growth, yield and nutrient concentration 

(IIPR, 2014–15) [23]. In moderately Zn deficient soils, zinc 

priming is an effective tool, whereas under severe deficiency 

it may not fulfil the zinc requirement of the plant. For 

example, seed priming alone of kidney bean is not sufficient 

to fulfill its requirement (Harris et al., 2008) [19] 

 

Seeds coating  

Seed coatings with trace elements, viz. molybdenum, iron, 

zinc, manganese and boron, have been found more effective. 

In alkaline soil, application of iron, zinc and manganese have 

considerable significance, where availability of these 

elements is decreased. Further, molybdenum is commonly 

used in legumes with lime especially when sown in acid soils. 

Varieties of chelated and mineral forms of trace elements 

have been used in seed coatings. The effectiveness of seed 

coating depends largely on chemical used, soil type, soil 

health or fertility status, coating time, coating agent, ratio of 

chemical to seed etc. Application of zinc through seed coating 

improves zinc concentration in seeds (Singh, 2007; Masuthi et 

al., 2009; IIPR, 2014–15) [40, 41, 23] besides improving seed 

emergence, plant growth and leaf area. 

Among the major agronomic strategies highlighted as key 

solution to Zn and Fe deficiency, foliar-fertilization strategies 

may be considered more sustainable and economically viable 

strategies for micronutrient enrichment of the grains 

(Cakmak, 2008; Prasad et al., 2014) [10, 36].  

 

Mineral Fertilizer 

Mineral fertilizers are inorganic substances containing 

essential minerals and can be applied to the soil to improve 

the micronutrient status of soil and thus plant quality. The 

phytoavailability of minerals in the soil is often low; thus, to 

improve the concentration of minerals in the edible plant 

tissues, the application of mineral fertilizers with improved 

solubility and mobility of the minerals is required (White, 

2009) [48]. This method can be used to fortify plants with 

mineral elements, but not organic nutrients, such as vitamins, 

which are synthesized by the plant itself. This method was 

successfully implemented for Se, I, and Zn, as these elements 

had good mobility in the soil as well as in the plant. Plants 

were successfully enriched with I and Zn in China and 

Thailand using inorganic fertilizers, respectively (Winkler, 

2011) [49]. However, Fe fertilization was not successful due to 

a low mobility of Fe in soil (Grusak, 1999) [18] The 

concentration of Zn was increased in field pea grains by either 

soil application of Zn fertilizer alone or combined with foliar 

treatments; thus, these methods could be potentially used for 

the biofortification of field peas (Poblaciones, 2016) [35] 
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Pulse crops were biofortified with micronutrients, Fe, Zn, and 

Se, through foliar application in various studies that resulted 

in increased levels of these micronutrients in the harvested 

grain. Márquez-Quiroz et al. reported increased concentration 

of Fe (29–32%) in seeds of cowpeas. Ali et al. reported 

increased Fe concentration (46%) in mungbeans upon foliar 

application of Fe. Similarly, foliar application of Fe and Zn 

significantly increased the concentration of these minerals 

along with protein in seeds of cowpeas (Salih, 2013) [37] and 

chickpeas (Nandan et al., 2018) [31] Shivay et al. observed a 

correlation between Zn uptake and the grain yield of 

chickpeas following foliar application of Zn, and reported that 

this approach was better than soil application.  

 

Soil application of micronutrient fertilizers  

Soil application of zinc in chickpea also had significant 

variations among genotypes. Among chickpea genotypes the 

order of grain zinc concentration was ‘Pusa 372’ > ‘Pusa 

2024’ > ‘Pusa 5028’ during the first year, while it was 

differed in the second year being ‘Pusa 5028’ > ‘Pusa 372’ > 

‘Pusa 2024’. These findings indicate that genotypic variations 

as well as environmental factors govern the concentration and 

uptake of zinc by the grain and straw (Shivay et al., 2014b; 

Shivay et al., 2014c) [36, 39]. The range of variation in Zn 

concentration in chickpea grain 36.0 to 44.9 mg/kg and in 

straw 29.5 to 43.3 mg/kg. Each successive level (2.5 kg/ha) of 

Zn application significantly increased Zn concentration in 

chickpea grain and straw and the highest Zn concentration of 

50.1 mg Zn/kg grain was obtained at 7.5 kg Zn/ha. Likewise, 

each successive level (2.5 kg Zn/ha) of Zn application 

increased Zn concentration in chickpea straw up to 7.5 kg 

Zn/ha. The Zn concentration in chickpea grain increased from 

33.6–38.6 mg/kg in no-Zn (check) to 45.9–48.4 mg/kg with 

the application of 7.5 kg Zn/ha over the years (Shivay et al., 

2014b; Shivay et al., 2014c) [36, 39].  

 

Foliar application of micronutrients and urea 

The practice of applying easily-soluble inorganic fertilizers 

directly to the leaves of the crop plants is more effective 

under the situations where mineral elements becomes 

unavailable to the plant immediately after application during 

later stage of growth. Likewise, foliar fertilization is more 

practical and effective under the conditions where mineral 

elements are not readily translocated to edible tissues. 

Therefore, foliar fertilization is the easiest and fastest way of 

biofortification of pulses grains with Fe, Zn, or other desirable 

micro-mineral nutrients. As majority of pulses are grown 

under rainfed/ dryland conditions wherein foliar fertilization 

has a greater advantage. 

Ferrandon and Chamel (1988) [14] found that applying Zn, Fe 

and Mn either in chelated or sulphate salt form are ex- 

tensively fixed by the leaf cuticle. They also reported reduced 

absorption of Zn, Fe and Mn in chelated form compared with 

inorganic salt. However, the translocation within the plant 

system was high when applied in chelated form. It is well 

established that upward transport of the nutrients may take 

place in either phloem or xylem, whereas export of plant 

nutrients from leaves and downward transport in the stem 

may take place solely in phloem. The transport of nutrients 

(e.g. zinc) from source (leaves) to the sink (grain) also not 

takes place uniformly, it occurs at variable rate (Pearson and 

Rengel, 1995) [35]. The effectiveness of the foliar fertilization 

is also governed by the factors, viz. concentration of solution, 

timing of spray, stages of crop development, form of 

fertilizers etc. Foliar fertilization with Zn-EDTA, Fe-EDTA 

and other chelates has been used in majority of cereals and 

pulses. Chelates are more effective than sulphate salt. Three 

sprays of ZnEDTA 0.5% solution spray @ 500 litres/ha at 

maximum vegetative growth + flowering + grain-filling 

stages was better than ZnSO4.7H2 O in increasing the 

productivity and Zn concentration in grain as well as straw of 

chickpea (Shivay et al., 2014a) [39]. The effectiveness of the 

form of fertilizer is also affected by the stage of crop 

development and timing of spray. Foliar fertilization with 

urea is reported to improve yield attributes, yield and 

chlorophyll content of chickpea. The physiological traits of 

chickpea, viz. NRA, RWC and chlorophyll content, in leaves 

attained higher values with 1% urea spray (Verma et al., 

2009) [43]. 

 

 
 

Fig 3: Biofortification through genetic engineering 

 

Biofortification through genetic engineering is an alternative 

approach when variation in the desired traits is not available 

naturally in the available germplasm, a specific micronutrient 

does not naturally exist in crops, and/or modifications cannot 

be achieved by conventional breeding (Mayer et al., 2008; 

Perez-Massot et al., 2013) [30, 34]. This approach was supported 

by the availability of fully sequenced genomes in various 

crops in recent years. Along with increasing the concentration 

of micronutrients, this approach can also be targeted 

simultaneously for removal of antinutrients or inclusion of 

promoters that can enhance the bioavailability of 

micronutrients (White, 2009; Garg, 2018; Carvalho, 2013) [48, 

15, 11]. This approach had not only utilized genes associated 

with various metabolic pathways operated in plants, but also 

from bacteria and other organisms (Christou, 2004 and 

Newell-McGloughlin, 2008) [12, 33]. Development of transgenic 

crops requires a substantial investment during the initial stage, 

but this could be a sustainable approach that has the potential 

to target large populations, especially in developing countries 

(White, 2005; Hirschi, 2009) [21]. Several crops have been 

successfully modified using a transgenic approach to 

overcome a micronutrient deficiency. For example, enhanced 

accumulation (3 to 4 times) of Fe was noted in rice via 

expression of the iron-storage protein, ferritin (Goto et al., 

2000 and Vasconcelos, 2003) [16, 42] 

Recently, transgenic multivitamin corn was produced by the 

simultaneous modification of three distinct metabolic 

pathways to increase the levels of three vitamins, i.e., -

carotene (169-fold), ascorbate (6-fold), and folate (2-fold), in 
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the endosperm, and this could pave the way to develop 

nutritionally complete cereals (Naqvi, 2009) [32]. Using 

metabolic engineering, the folate concentration was increased 

in tomato and rice (Blancquaert, 2013, 2014) [3, 2]. 

Storozhenko et al. (2007) [3] reported more than 100-fold 

increase in folate concentration in rice by overexpression of 

Arabidopsis thaliana pterin and para-aminobenzoate genes, 

precursors of the folate biosynthesis pathway, whereas 

Hossain et al. reported a two- to four-fold increase in 

Arabidopsis by overexpression of the gene involved in pterin 

biosynthesis. 

In recent years, targeted gene editing technologies using 

artificial nucleases, zinc finger nucleases (ZFNs), 

transcription activator – like effector nucleases (TALENs), 

and the clustered regularly interspaced short palindromic 

repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system 

(CRISPR/Cas9) have given rise to the possibility to precisely 

modify genes of interest, and thus have potential application 

for crop improvement (Bortesi, 2015 and Jaganathan, 2018) [5, 

25]. These technologies have been used in various crops 

including rice (Li, 2012; Zhang, 2014) wheat (Wang, 2014) 

[25] and tomatoes (Brooks, 2014). Recently, CRISPR/Cas9 and 

TALENs technologies were used to generate mutant lines for 

genes involved in small RNA processing of Glycine max and 

Medicago truncatula. Similarly, CRISPR/Cas9-mediated 

genome editing technology was used in cowpeas to 

successfully disrupt symbiotic nitrogen fixation (SNF) gene 

activation (Ji et al., 2019) [26] These findings pave the way for 

applicability of use of gene editing technologies for various 

traits of interest in legumes. 

 

Biofortification through Plant breeding 

This can be an effective approach for crop improvement; 

however, political opposition to GMOs in many countries, a 

complex legal framework for the acceptance and 

commercialization of transgenic crops, along with expensive 

and time-consuming regulatory processes are the major 

limitations of this method (Winkler 2011; Inaba 2004 and 

Watanabe et al., 2005) [49, 24, 45] For example, golden rice has 

been available since the early 2000s and has the potential to 

deliver more than 50 per cent of the estimated average 

requirement for vitamin A, but unfortunately it has not been 

commercially introduced in any country to date due to risk 

factors involved in the regulatory approval processes 

(Wesseler 2014; Bouis and Saltzman, 2017) [47, 7]. Restrictions 

on the use of genetically modified crops in many countries 

prompted Harvest Plus to take the initiative to address 

micronutrient deficiencies through conventional plant 

breeding (Nestel et al., 2006 and Saltzman et al., 2013) 

Biofortification through plant breeding is a cost-effective and 

sustainable approach that can improve the health status of 

low-income people globally (Bouis, 2002; Bouis 2011: 

Blancquaert et al., 2014) [8, 6]. This approach has been used to 

control deficiencies of micronutrients including carotenoids, 

Fe, and Zn (White and Broadley, 2005; Welch et al., 2005) [45] 

 

Conclusion 

Awareness of dietary diversity must be followed up to 

alleviate micronutrient malnutrition. As people of under 

developed nations cannot afford to supplemented and 

diversified foods, research and development of nutrient 

enriched biofortified crops should carried out to face this 

problem. There are several aspects of biofortification but 

agronomic aspect (Ferti-fortification) is simpler one and is 

mostly followed. 
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