

Effect of fly ash, organic manure and fertilizers IJCS 2020; SP-8(6): 121-125 on nitrogen, phosphorus and potassium content in © 2020 IJCS grain and straw in rice-wheat cropping system in Alfisols and Vertisols

LK Ramteke and SS Sengar

DOI: https://doi.org/10.22271/chemi.2020.v8.i6b.11061

Field experiment was conducted under Alfisols at KVK, Farm Katghora , Korba and Vertisols at Instructional Farm Indira Gandhi Krishi Vishwavidyalaya, Raipur during 2011 and 2012.To assess the effect of different doses of fly ash alone or in combination with manure and fertilizers in rice -wheat cropping system with Sixteen treatments (i.e. T₁-Control, T₂- 10 t FA ha⁻¹, T₃-20 t FA ha⁻¹ T₄-STCR (based fertilizer recommendation), T₅-75% NPK ha⁻¹, T₆-100% NPK (100:60:40), T₇-75% NPK ha⁻¹ + 10 t $FA\ ha^{-1}$, $T_8.75\%\ NPK\ ha^{-1} + 20\ t\ FA\ ha^{-1}$, $T_9.100\%\ NPK\ ha^{-1} + 10\ t\ FA\ ha^{-1}$, $T_{10}.100\%\ NPK\ ha^{-1} + 20\ t\ FA$ $ha^{\text{-}1},\,T_{11}\text{-}75\%\;\;NPK\;ha^{\text{-}1}+5\;t\;FYM\;ha^{\text{-}1},\,T_{12}\text{-}100\%\;\;NPK\;ha^{\text{-}1}+5\;t\;FYM\;ha^{\text{-}1},\,T_{13}\text{-}75\%\;\;NPK\;ha^{\text{-}1}+5\;t\;FYM\;ha^{\text{-}1}+5$ $+10\ t\ FA,\ T_{14}-75\%\ NPK\ ha^{-1}+5\ t\ FYM\ +20\ t\ FA\ ha^{-1},\ T_{15}-100\%\ NPK\ ha^{-1}\ +5\ t\ FYM+10\ t\ FA\ ha^{-1}\ and$ T₁₆- 100% NPK ha⁻¹ +5 t FYM+20 t FA ha⁻¹) under Split Plot Design with factorial arrangement of crop and soil in main plot and treatment in sub plot. The nitrogen content significantly increases in grain and straw and treatment T₁₆ recorded highest N content and lowest in T₁. The phosphorus increases in both the crops under Vertisol whereas higher phosphorus content in straw was recorded in rice under Alfisol and wheat under Vertisol. Interaction of crops x soil x treatment is significantly significantly influenced due to application of fly ash alone or in combination with organic manure and fertilizers. Potassium content in grain and straw was significantly increases in rice and wheat. Treatment, T16 recorded highest potassium content in grain whereas highest potassium content in straw was recorded in T12 and lowest potassium content recorded in T_1 .

Keywords: Fly ash, macro nutrient content, Rice-wheat cropping system

Introduction

In India and most of the country's major source of electrical energy is coal based thermal power plant, which produce 175 million tonnes, fly ash which would require about 40,000 hectares of land for the construction of ash ponds (Lal et al., 2012) [3]. The ash production in India is expected to reach about 225 million tonnes per annum by 2017. In Chhattisgarh produces fly ash to the tone of about 26880 metric tons per day i.e. nearly 9.7 million tons of fly ash annually, out of which the four major Thermal Power Plants in Korba district alone generate about 24000 metric tons per day. Fly ash having excellent physico-chemical properties. The particle size distribution of fly ash is similar to silt or silt loam soil. It contains 35% sand, 55% silt, 10% clay with 13g kg⁻¹ organic carbon, pH ranged from 4.5 to 12.0 depending on the silica-content of parental coal. Total N, P and K₂O content is 0.3% 1.5%, 0.09% respectively. Total Fe₂O₃ 9%, Al₂O₃ 2.3%, CaO 1.6% and SiO₂ 73% (Maiti et al., 1990) [4]. Fly ash consists of mineral matter which was uptake by plant from the soil. It can act as a secondary source of fertilizer nutrients like P, K, Ca, Mg, S, Cu, Fe, Zn, Mn, Mo etc. (Totawat et al,. 2002) [6].

Material and Methods

The nitrogen content analysis of grain and straw sample was done by taking 0.5 gm uniform prepared sample in digestion tube to which 1 gm salt mixture (K₂SO₄ and CuSO₄.5H₂O in the ratio of 10:1) and 10 ml. of concentrated H₂SO₄ acid was added and material was digested at 350 °C in digestion block till the solution becomes colorless.

P-ISSN: 2349-8528 E-ISSN: 2321-4902 www.chemijournal.com

Received: 19-08-2020 Accepted: 21-10-2020

LK Ramteke

Indira Gandhi Agricultural University, Raipur, Chhattisgarh, India

SS Sengar Indira Gandhi Agricultural

University, Raipur, Chhattisgarh, India

Corresponding Author: LK Ramteke Indira Gandhi Agricultural University, Raipur, Chhattisgarh, India

Then the nitrogen in digested material was distilled by automatic KEL plus system. The phosphorus content was determined by vanadomolybdo-phosphoric acid yellow color complex method as described by Jackson (1967) [2]. The potassium content was determined by flame photometer as described by Chapman and Pratt (1961) [1].

Nitrogen content in grain and straw

The nitrogen content in grain and straw was significantly influenced due to application of fly ash alone or in combination with organic manure and fertilizers (Table 1). The higher nitrogen content in grain was recorded in both the crops under *Vertisol* during 2011, 2012 and pooled data. The wheat grain contains higher nitrogen content than rice. The treatments, T_{16} , T_{15} recorded significantly highest nitrogen content during 2011 and T_{16} in 2012 and pooled data (Table 3). It was at par with treatment, T_{14} , T_{13} and T_{12} in 2011 however, T_{15} , T_{14} , T_{13} in 2012 and T_{15} , T_{14} in pooled data. The lowest nitrogen content was recorded in treatment T_{1} .

The higher nitrogen content in straw was recorded in rice under Alfisol during 2011, 2012 and pooled data (Table 1). However, higher nitrogen content in wheat straw was recorded in Vertisol. Table 4 shows that nitrogen content in straw was increased significantly due to application of fly ash with manure and fertilizers. The higher nitrogen content was recorded in treatment, T_{16} and T_{15} in 2011. It was at par with treatment, T_{14} , T_{13} , T_{12} and T_{10} . Similarly, treatments T_{16} , T_{15} andT₁₄ recorded higher nitrogen content in straw in 2012. It was at par with treatment, T₁₃, T₁₂ and T₁₀.In case of pooled data treatment, T₁₆ recorded highest nitrogen content in straw and it was at par with treatment, T₁₅ and T₁₄. The lowest nitrogen content was recorded in treatment T₁. This might be due to complimentary effect on N availability to rice and wheat through its growth. Which could also be attributed to good soil physical environment, thereby better root prolification due to fly ash addition.

Phosphorous content in grain and straw

The phosphorous content in grain was significantly influenced due to application of fly ash alone or in combination with organic manure and fertilizers, is shown in (Table 1). The higher phosphorous content in grain was recorded in both the crops under *Vertisol* during 2011, 2012 and pooled data. Table 5 the treatment, T_{16} recorded significantly highest phosphorous content during 2011and pooled data however, T_{14} recorded higher content of P in 2012. It was at par with treatment, T_{14} , T_{15} and T_{13} in 2011, and Treatment, T_{16} , T_{15} , T_{13} and T_{12} in 2012 and T_{14} , T_{15} and T_{13} and T_{12} in pooled data. The lowest phosphorous content was recorded in treatment T_1 . The interaction between crop \times soil \times treatment was non-significant.

The higher phosphorous content in straw was recorded in rice under Alfisol during 2011, 2012 and pooled data (Table 1). However, higher phosphorous content was recorded in wheat straw in Vertisol during 2011-12, 2012-13 and pooled data. Interaction between $crop \times soil \times treatments$ reveals (Table 6) that, rice \times Vertisol \times treatment, T₁₆ and T₁₅ recorded significantly highest phosphorous content in straw among all the treatments and rice \times Alfisol \times treatment, T_{12} recorded highest phosphorous content in straw. It was at par with treatment, T_{11} , T_{16} , T_{14} , T_{9} , T_{13} and T_{15} in rice \times Alfisol \times treatment. In case of wheat \times Vertisol \times treatment, T₁₅ recorded significantly highest phosphorous content in straw among all the treatments, and it was at par with T_{16} , T_{14} , T_{10} , T₁₃, and T₁₁. However, highest phosphorous content in straw was recorded in T_{16} and it was at par with treatment, T_{14} , T_{12} and T_{10} in wheat \times Alfisol \times treatment. The lowest straw yield was recorded in treatment T_1 . This might be due to the supply of these nutrients by fly ash and P fertilizer. This could also be due to fly ash addition which might have further helped in creating soil favorable physical condition for root prolification and also solubilization of phosphorus due to spurt in biotic activity in soil. Similar findings were also reported by Selvakumari et al (2000) [5] and Warambhe et al. $(1993)^{[7]}$.

Table 1: Effect of fly ash alone or in combination with organic manure and fertilizers on nitrogen content in grain and straw in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest.

		Nitro	ogen cont	ent in grain	(%)		Nitrogen content in straw (%)						
Particulars	2011-12		2012-13		Pooled		2011-12		2012-13		Pooled		
	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	
Rice	1.11	1.10	1.10	1.09	1.11	1.10	0.55	0.57	0.55	0.57	0.55	0.57	
Wheat	1.55	1.53	1.55	1.54	1.55	1.54	0.55	0.54	0.55	0.54	0.55	0.54	
	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	
A	0.002	0.005	0.006	0.021	0.003	0.012	0.002	0.006	0.003	0.011	0.002	0.007	
В	0.002	0.005	0.006	N/A	0.003	0.012	0.002	N/A	0.003	N/A	0.002	N/A	
$A \times B$	0.002	N/A	0009	N/A	0.005	N/A	0.003	0.009	0.005	0.016	0.003	0.010	

Table 2: Effect of fly ash alone or in combination with organic manure and fertilizers on phosphorous content in grain and straw in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest.

		Phospl	horous co	ntent in gra	in (%)			Phospho	orous coi	ntent in stra	ıw (%)	
Particulars	2011		2012		Pooled		2011		2012		Pooled	
	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol
Rice	0.24	0.23	0.24	.023	0.24	0.23	0.064	0.066	0.062	0.068	0.063	0.067
Wheat	0.31	0.30	0.32	0.30	0.31	0.30	0.067	0.060	0.070	0.064	0.069	0.062
	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at5%	SEm±	CD at 5%	SEm±	CD at 5%
A	0.003	0.009	0.001	0.004	0.001	0.004	0.001	N/A	0.001	N/A	0.001	N/A
В	0.003	N/A	0.001	0.004	0.001	0.004	0.001	N/A	0.001	N/A	0.001	N/A
$A \times B$	0.004	N/A	0.002	N/A	0.002	N/A	0.002	N/A	0.001	0.004	0.001	0.003

Table 3: Effect of fly ash alone or in combination with organic manure and fertilizers on nitrogen content in grain in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest.

		Transferrante		Nitro	gen con	tent in grain	1 (%)	
		Treatments	201	11		2012	P	ooled
T_1	-	Control	1.2	24		1.25 ^f		1.24 ⁱ
T_2	-	10 t FA ha ⁻¹	1.2	25		1.26 ^e		1.26 ^h
T ₃	-	20 t FA ha ⁻¹	1.2	1.26		1.27 ^e		1.27 ^g
T ₄	-	STCR	1.3	0^{d}		1.31°		1.30 ^e
T ₅	-	75%NPK ha ⁻¹	1.3	0^{d}		1.29 ^d		1.29 ^f
T_6	-	100% NPK ha ⁻¹	1.3	32°		1.32°		1.32 ^d
T7	-	75%NPK ha ⁻¹ +10 t FA ha ⁻¹	1.2	.9e		1.29 ^d		1.29 ^f
T_8	-	75%NPK ha ⁻¹ +20 t FA ha ⁻¹	1.3	60^{d}		1.30 ^d	1.30e	
T9	-	100%NPK ha ⁻¹ +10 t FA ha ⁻¹	1.3	34 ^b	1.33°			1.33 ^d
T_{10}	-	100%NPK ha ⁻¹ +20 t FA ha ⁻¹	1.3	34 ^b	1.34 ^b			1.34°
T_{11}	-	75% NPK ha ⁻¹ +5 t FYM ha ⁻¹	1.3	34 ^b	1.32°			1.33 ^d
T_{12}	-	100%NPK ha ⁻¹ +5 t FYM ha ⁻¹	1.3	66 ^a		1.36 ^b	1.36 ^b	
T ₁₃	-	75%NPK ha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	1.3	88a		1.37 ^a		1.37 ^b
T ₁₄	-	75%NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	1.3	88a		1.38 ^a		1.38 ^a
T ₁₅	-	100%NPKha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	1.3	39a		1.39 ^a		1.39 ^a
T_{16}	-	100%NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	1.3	39a		1.40 ^a		1.40 ^a
			SEm± C	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%
C			0.007	0.020	0.011	0.031	0.007	0.018
$A \times C$			0.010	0.028	0.016	N/A	0.009	0.026
B×C			0.010	N/A	0.016	N/A	0.009	N/A

Table 4: Effect of fly ash alone or in combination with organic manure and fertilizers on nitrogen content in straw in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest

		The second secon		Nitro	gen con	tent in strav	w (%)	
		Treatments	2	2011		2012	P	ooled
T_1	-	Control		0.49		0.48		0.48
T_2	-	10 t FA ha ⁻¹		0.50	0.50			0.50
T_3	-	20 t FA ha ⁻¹		0.50		0.50		0.50
T_4	-	STCR	(0.55 ^b		0.55 ^c		0.55 ^e
T ₅	-	75% NPK ha ⁻¹	(0.53°		0.53 ^d		0.53 ^g
T_6	-	100% NPK ha ⁻¹	(0.55 ^b		0.55°		0.55 ^e
T_7	-	75%NPK ha ⁻¹ +10 t FA ha ⁻¹	(0.53°		0.54 ^c		$0.54^{\rm f}$
T_8	-	75% NPK ha ⁻¹ +20 t FA ha ⁻¹	(0.54° 0.		0.54 ^c		0.54 ^f
Т9	-	100%NPK ha ⁻¹ +10 t FA ha ⁻¹	(0.56 ^b	0.56^{b}			0.56^{d}
T_{10}	-	100%NPK ha ⁻¹ +20 t FA ha ⁻¹	(0.57 ^a	0.58a			0.57 ^c
T_{11}	-	75% NPK ha ⁻¹ +5 t FYM ha ⁻¹	(0.55 ^b	0.55°		0.55 ^e	
T_{12}	-	100%NPK ha ⁻¹ +5 t FYM ha ⁻¹	(0.58 ^a		0.58 ^a	0.58 ^b	
T_{13}	-	75%NPK ha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	(0.58 ^a		0.58 ^a		0.58 ^b
T_{14}	-	75%NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	(0.59 ^a		0.59 ^a		0.59 ^a
T_{15}	-	100%NPKha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	(0.60^{a}		0.59 ^a		0.59 ^a
T_{16}	-	100%NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	(0.60^{a}		0.59 ^a		0.60^{a}
			SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%
С			0.009	0.024	0.007	0.021	0.005	0.015
$A \times C$			0.012	N/A	0.010	N/A	0.008	N/A
$B \times C$			0.012	N/A	0.010	N/A	0.008	N/A

Table 5: Effect of fly ash alone or in combination with organic manure and fertilizers on phosphorous content in grain in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest.

		Treatments	Phosph	orous content in gra	ain (%)
		Treatments	2011	2012	Pooled
T_1	-	Control	0.233	0.236^{d}	0.235
T_2	-	10 t FA ha ⁻¹	0.247	0.246^{d}	0.246
T ₃	-	20 t FA ha ⁻¹	0.249	0.251°	0.250
T_4	-	STCR	0.289 ^b	0.288 ^b	0.289
T ₅	-	75% NPK ha ⁻¹	0.255	0.257 ^c	0.256
T_6	-	100% NPK ha ⁻¹	0.276^{d}	0.278 ^b	0.277
T 7	-	75%NPK ha ⁻¹ +10 t FA ha ⁻¹	0.259	0.264 ^b	0.262
T_8	-	75%NPK ha ⁻¹ +20 t FA ha ⁻¹	0.272 ^d	0.273 ^b	0.272
T9	-	100% NPK ha ⁻¹ +10 t FA ha ⁻¹	0.286°	0.283 ^b	0.285
T_{10}	-	100% NPK ha ⁻¹ +20 t FA ha ⁻¹	0.287°	0.286 ^b	0.286
T_{11}	-	75% NPK ha ⁻¹ +5 t FYM ha ⁻¹	0.280°	0.282 ^b	0.281
T_{12}	-	100% NPK ha ⁻¹ +5 t FYM ha ⁻¹	0.295 ^b	0.297 ^a	0.296a
T_{13}	-	75% NPK ha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	0.300a	0.297 ^a	0.299a

T_{14}	-	75% NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	().306ª	0.309^{a}		(0.307 ^a
T ₁₅			(0.304^{a}		0.306^{a}		0.305 ^a
T ₁₆	- 100% NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹		(0.308a		0.308 ^a		0.308 ^a
			SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%
С			0.004	0.012	0.005	0.015	0.003	0.009
$A \times C$			0.006	N/A	0.008	N/A	0.005	N/A
B×C			0.006	N/A	0.008	N/A	0.005	N/A

Table 6: Effect of fly ash alone or in combination with organic manure and fertilizers on phosphorous content in straw in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest.

	Treatments	Phosp	horous con	tent in straw	(%)
		Ric	e	Who	eat
		Vertisol	Alfisol	Vertisol	Alfisol
T_1 -	Control	0.050	0.033	0.037	0.037e
T ₂ -	10 t FA ha ⁻¹	0.053	0.053°	0.043	0.037e
T ₃ -	20 t FA ha ⁻¹	0.060	0.050c	0.047	0.047 ^d
T4 -	STCR	0.057	0.060^{b}	0.057^{c}	0.050^{d}
T ₅ -	75% NPK ha ⁻¹	0.057	0.050^{c}	0.067 ^b	0.057 ^d
T ₆ -	100% NPK ha ⁻¹	0.053	0.060^{b}	0.067 ^b	0.060^{c}
T ₇ -	75% NPK ha ⁻¹ +10 t FA ha ⁻¹	0.050	0.063 ^b	0.060	0.053 ^d
T ₈ -	75%NPK ha ⁻¹ +20 t FA ha ⁻¹	0.057	0.063 ^b	0.073 ^b	0.050^{d}
T ₉ -	100%NPK ha ⁻¹ +10 t FA ha ⁻¹	0.053	0.073a	0.080^{a}	0.073 ^b
T ₁₀ -	100%NPK ha ⁻¹ +20 t FA ha ⁻¹	0.063	0.067^{b}	0.083a	0.077a
T ₁₁ -	75% NPK ha ⁻¹ +5 t FYM ha ⁻¹	0.063	0.087^{a}	0.077^{a}	0.060^{c}
T ₁₂ -	100% NPK ha ⁻¹ +5 t FYM ha ⁻¹	0.070	0.097a	0.073 ^b	0.077a
T ₁₃ -	75% NPK ha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	0.073	0.070a	0.080^{a}	0.070 ^b
T ₁₄ -	75% NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	0.073	0.077a	0.083a	0.077a
T ₁₅ -	100% NPKha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	0.087a	0.070^{a}	0.087a	0.073 ^b
T ₁₆ -	100% NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	0.087a	0.083a	0.083a	0.087a
SEm±		0.005			
CD at 5% level		0.013			

Table 7: Effect of fly ash alone or in combination with organic manure and fertilizers on potassium content in grain and straw in rice-wheat cropping system in *Vertisol* and *Alfisol* at harvest.

		Potass	ium con	tent in gra	in (%)		Potassium content in straw (%)						
Particulars	2011		2012		Pooled		2011		2012		Pooled		
	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	Vertisol	Alfisol	
Rice	0.53	0.52	0.52	0.52	0.53	0.52	1.44	1.44	1.44	1.44	1.44	1.44	
Wheat	0.41	0.40	0.42	0.40	0.41	0.40	1.48	1.47	1.48	1.47	1.48	1.47	
	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	
A	0.002	0.007	0.002	0.006	0.001	0.004	0.002	0.008	0.003	0.009	0.002	0.002	
В	0.002	0.007	0.002	0.006	0.001	0.004	0.002	0.008	0.003	N/A	0.002	0.002	
$A \times B$	0.003	N/A	0.003	N/A	0.002	0.005	0.003	0.011	0.004	N/A	0.003	0.003	

Table 8: Effect of fly ash alone or in combination with organic manure and fertilizers on potassium content in grain in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest.

		Treatments		Potas	sium co	ntent in grai	in (%)		
		Treatments		2011		2012	F	ooled	
T_1	-	Control	(0.420 ^d	(0.420e	(0.420	
T_2	-	10 t FA ha ⁻¹	().433 ^d	().431e	(0.432	
T ₃	- 20 t FA ha ⁻¹		(0.433 ^d).437 ^d	(0.435	
T ₄	-	STCR	().482a	().484 ^b	().483°	
T ₅	-	75% NPK ha ⁻¹	().452°	().456 ^c	().455 ^d	
T ₆	-	100% NPK ha ⁻¹	().475 ^b	().469 ^b	().470°	
T ₇	-	75%NPK ha ⁻¹ +10 t FA ha ⁻¹	().461 ^b	().458 ^c	(0.460 ^d	
T ₈	-	75%NPK ha ⁻¹ +20 t FA ha ⁻¹	().463 ^b	0.468 ^c		0.468 ^c		
T9	-	100% NPK ha ⁻¹ +10 t FA ha ⁻¹	().468 ^b	0.464 ^c		0.465°		
T_{10}	-	100% NPK ha ⁻¹ +20 t FA ha ⁻¹	().486a	0.480 ^b		0.481 ^b		
T_{11}	-	75% NPK ha ⁻¹ +5 t FYM ha ⁻¹	().463 ^b	().463°	0.462 ^d		
T_{12}	-	100% NPK ha ⁻¹ +5 t FYM ha ⁻¹	C	.490a	().491ª	().491ª	
T_{13}	-	75%NPK ha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	().491a	().488a	().489a	
T_{14}	-	75%NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	().497 ^a	().498 ^a	().497ª	
T ₁₅	-	100% NPKha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	(0.500a		0.500a	(0.500a	
T ₁₆	-	100% NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	(0.505a		0.505 ^a 0.505 ^a		0.505a	
			SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	
С			0.007	0.018	0.005	0.014	0.004	0.012	

A×C	0.009	0.026	0.007	0.019	0.006	0.017
B×C	0.009	N/A	0.007	N/A	0.006	N/A

Table 9: Effect of fly ash, alone or in combination with organic manure and fertilizers on potassium content in straw in rice-wheat cropping system in *Alfisol* and *Vertisol* at harvest.

		Treatments		Potas	sium coi	ntent in stra	in straw (%)		
			2	2011		2012	P	ooled	
T_1	-	Control	1	.334		1.338		1.336	
T_2	-	10 t FA ha ⁻¹	1	.343	1.342			1.342	
T ₃	-	20 t FA ha ⁻¹	1	.353		1.355		1.354	
T ₄	-	STCR	1	.504a	1	.500a	1	.502 ^b	
T ₅	- 75% NPK ha ⁻¹		1	1.439 ^d		.449 ^e	1	.444 ^f	
T_6	- 100% NPK ha ⁻¹		1	1.483 ^b		.481 ^b	1	.482°	
T7	- 75% NPK ha ⁻¹ +10 t FA ha ⁻¹		1	1.440 ^d		1.441 ^e		.440 ^f	
T_8	-	75% NPK ha ⁻¹ +20 t FA ha ⁻¹	1	.453 ^d	1.453 ^d		1	.453e	
Т9	-	100% NPK ha ⁻¹ +10 t FA ha ⁻¹	1	1.503a		1.498a		.500b	
T_{10}	-	100% NPK ha ⁻¹ +20 t FA ha ⁻¹	1	.505a	1.509 ^a		1	.507a	
T_{11}	-	75% NPK ha ⁻¹ +5 t FYM ha ⁻¹	1	.464°	1.471°		1	.468 ^d	
T_{12}	-	100%NPK ha ⁻¹ +5 t FYM ha ⁻¹	1	.523a	1	.523a	1.523a		
T ₁₃	-	75%NPK ha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	1	.504a	1	.502a	1	.503 ^b	
T_{14}	-	75%NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	1	.493 ^b	1	.496a	1	.494 ^b	
T_{15}	-	100%NPKha ⁻¹ +5 t FYM+10 t FA ha ⁻¹	1	.508a	1	.512a	1	.510a	
T_{16}	-	100%NPK ha ⁻¹ +5 t FYM+20 t FA ha ⁻¹	1	.514a	1	.511a	1	.513a	
			SEm±	CD at 5%	SEm±	CD at 5%	SEm±	CD at 5%	
С			0.007	0.019	0.005	0.014	0.004	0.012	
A×C			0.010	0.027	0.007	0.020	0.006	0.018	
B×C			0.010	N/A	0.007	N/A	0.006	N/A	

Potassium content in grain and straw

The potassium content in grain was significantly influenced due to application of fly ash alone or in combination with organic manure and fertilizers (Table 7). The higher potassium content in grain was recorded in rice under *Vertisol* during 2011, and pooled data. However, higher potassium content was recorded in wheat grain under *Vertisol* during 2011-12, 2012-13 and pooled data. The potassium content in rice grain was higher than wheat.

The potassium content in grain was significantly increased due to application of fly ash alone or in combination with organic manure and fertilizers (Table 8). The treatment, T₁₆ recorded significantly highest potassium content in grain during 2011, 2012 and pooled data. It was at par with treatment, T_{15} , T_{14} , T_{13} , T_{12} , T_{10} and T_4 in 2011, treatment T_{15} , T_{14} , T_{12} and T_{13} in 2012 and pooled data. The lowest potassium content was recorded in treatment T₁. The interaction between crop × soil × treatments was nonsignificant. The higher potassium content in straw was recorded in wheat under Vertisol during 2011-12, 12-13 and pooled data (Table 7). The potassium content in wheat straw was higher than rice. The treatment, T_{12} recorded significantly highest potassium content in straw during 2011, 2012 and pooled data. It was at par with treatment, T₁₆, T₁₅, T₁₀, T₄, T₁₃ and T_9 in 2011, treatment T_{15} , and T_{16} , T_{10} , T_4 , T_{13} , T_9 and T_{14} in 2012, and T_{16} , T_{15} and T_{10} in pooled data (Table 9). The lowest potassium content was recorded in treatment T₁. The higher potassium content in grain and straw in rice under Alfisol responsible for supply of sufficient amount of nutrients.

References

- 1. Chapman HD, Prat PF. Soil water and plant analysis. In. Univ. California Agri. Div. Publisher 1961.
- Jackson ML. Soil chemical analysis, pentice hall of india Pvt. Ltd., New Delhi 1967.
- Lal K, Chhabra R, Mongia AD, Meena RL, Yadav RK. Release and uptake of potasium and sodium with fly ash

- application in rice on reclaimed alkali soil. Journal of the Indian Society of Soil Science 2012;60:181-186.
- 4. Maiti SS, Mukhopadhyay M, Gupta K, Banerjee SK. Evaluation of fly ash as a useful material in agriculture. J Indian Soc. Soil Sci 1990;38:324-344.
- Selvakumari G, Baskar M, Jayanthi D, Mathan KK. Effect of integration of fly ash with fertilizers and organic manures on nutrient availability, yield and nutrient uptake of rice in *Alfisols*. J Indian Soci. Soil Sci 2000;48(2):268-278.
- Totawat KL, Nagar GL, Jat SL, Jangir RK. In: Symposium on Effect of fly ash on the performance of wheat on ustochrepts of sub humid plains of India, held during 14-21 August, Thailand, Symposium. 2002;24(215):1-11.
- 7. Warambhe PE, Kene DR, Thakare KK, Darange OG, Bhoyar VS. Evaluation of physic chemical properties of fly ash of thermal power station, Koradi (Nagpur) for its likely use in agriculture. Journals of Soil and Crops 1993;3(1):75-77.