

P-ISSN: 2349–8528 E-ISSN: 2321–4902

www.chemijournal.com IJCS 2020; 8(5): 1745-1747 © 2020 IJCS

Received: 22-06-2020 Accepted: 02-08-2020

Satodiya BN

Department of Horticulture, B. A. College of Agriculture, AAU, Anand, Gujarat, India

Bhatt AH

Department of Horticulture, B. A. College of Agriculture, AAU, Anand, Gujarat, India

Maheriya PA

Department of Horticulture, B. A. College of Agriculture, AAU, Anand, Gujarat, India

Shah NI

Department of Horticulture, B. A. College of Agriculture, AAU, Anand, Gujarat, India

Corresponding Author: Satodiya BN Department of Horticulture, B. A. College of Agriculture, AAU, Anand, Gujarat, India

Effect of plant geometry on growth and yield of capsicum under open ventilated poly house

Satodiya BN, Bhatt AH, Maheriya PA and Shah NI

DOI: https://doi.org/10.22271/chemi.2020.v8.i5x.10549

Abstract

An investigation was carried out to study the effect of six different plant geometry on growth and yield parameters of capsicum under open ventilated poly house at Horticultural Research Farm, B. A. College of Agriculture, Anand Agricultural University during 2016-17 and 2017-18. Healthy seedlings were transplanted in a plot size of 5.4 m x 2.8 m i.e. 15.12 m²in six different plant geometry i.e. T_1 : 45×30 cm, T_2 : 45×45 cm, T_3 : 45×60 cm, T_4 : 60×30 cm, T_5 : 60×45 cm and T_6 : 60×60 cm. Results of the experiment showed that maximum picking was obtained in plant geometry 45×30 cm and 60×30 cm. Whereas, the highest number of fruits per plant were recorded in plant geometry 45×60 cm and 45×30 cm. The highest yield kg/plant was obtained in plant geometry 45×60 cm. However, maximum yield (kg/plot and q/1000 m²) was recorded in plant geometry 45×30 cm. Thus, plant geometry 45×30 cm is most suitable for cultivation of capsicum under open ventilated poly house for getting higher yield.

Keywords: Plant geometry, capsicum, poly house, yield

Introduction

Capsicum (Capsicum annum var. Grossum) belongs to the family Solanaceae. It is an important member of chilli group. It is variously called as capsicum, green pepper, sweet pepper, bell pepper etc. Capsicum attained a status of high value low volume crop in India and occupies a place of pride among vegetables in Indian cuisine, because of its delicacy and pleasant flavour coupled with rich content of ascorbic acid along with other vitamins and minerals. Cultivation of capsicum under protected structure is gaining momentum because it can produce throughout the year.

Considering its high nutritive value and utility. It is imperative to take attempts for its successful cultivation under open ventilated poly house, which is depends on several factors among them, plant geometry is one of the important aspects for production system of capsicum. There is no recommendation or report regarding the optimum geometry to cultivate the capsicum under the open ventilated poly house conditions in Gujarat. Considering the above facts, the present experiment was under taken to standardize the suitable plant geometry for getting higher yield.

Materials and Methods

An experiment was conducted in open ventilated poly house at the Horticulture Research Farm, B. A. College of Agriculture, AAU, Anand during 2016-17 and2017-18. Indra variety of capsicum was selected for the experiment. Plug trays were used to raise seedlings for both years under open ventilated poly-house conditions. The experiment was laid out in Completely Randomized Design with four repetitions. During second week of October, 30 days old healthy seedlings were transplanted in a plot size of 5.4 m x 2.8 m i.e. 15.12 m²in six different plant geometry i.e. T_1 : 45×30 cm, T_2 : 45×45 cm, T_3 : 45×60 cm, T_4 : 60×30 cm, T_5 : 60×45 cm and T_6 : 60×60 cm which were grouped in three plant density i.e. 4762, 3175 and 2381 plants/1000 m² based on their plant to plant spacing such as 30 cm, 45 cm and 60 cm. All recommended standard agronomical package of practices were followed such as fertigation and IPM. The data of growth and yield parameters were recorded from randomly selected five tagged plants from each net plot.

Results and Discussion Growth parameters

The data pertaining to growth parameters viz. number of branches at 30, 60 and 90 DATP, days to initiation of

flowering and 50% flowerings as well as days to first harvest are presented in Table 1 which showed non-significant difference among the plant geometry.

Table 1: Effect of plant geometry on growth parameters (Pooled of two years)

Treatments	Number o	f branches p	er plant at	Days to initiation of flower Days to 50% flowering		Days to first harvest	
	30 DATP	60 DATP	90 DATP				
T ₁ 45 x 30 cm	4.68	10.78	17.65	32.14	42.05	76.64	
T ₂ 45 x 45 cm	4.98	10.55	16.99	32.28	43.35	77.08	
T ₃ 45 x 60 cm	5.08	9.95	17.17	33.84	42.68	76.50	
T ₄ 60 x 30 cm	4.98	10.88	17.50	33.55	43.55	77.73	
T ₅ 60 x 45 cm	5.05	10.05	16.83	33.01	43.29	77.60	
T ₆ 60 x 60 cm	5.03	10.05	17.17	34.00	43.28	77.78	
S. Em. ±	0.19	0.30	0.59	0.61	0.37	0.78	
C. D. at 5%	NS	NS	NS	NS	NS	NS	

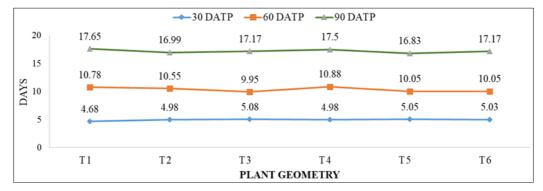


Fig 1: Number of Braches at 30, 60 and 90 DATP

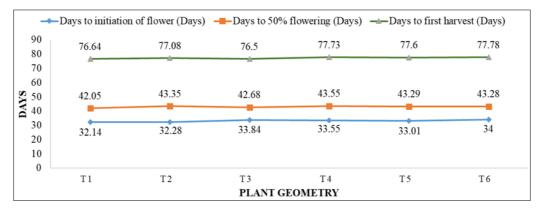


Fig 2: Days to initiation of flowering, 50% flowering and first harvest

Yield parameters

Data furnished in table 2 indicate that among the yield parameters, fruit girth and length observed non-significant

difference whereas, number of picking, number of fruits/plant, yield (kg/plant, kg/plot and q/1000 m²) found significant difference between different plant geometry.

Table 2: Effect of plant geometry on yield parameters and yield (Pooled of two years)

Treatments	Number of pickings	Fruit girth (cm)	Fruit length (cm)	Number of fruits/plant	Yield	Yield	Yield
Treatments	Number of pickings				(kg/plant)	(kg/plot)	$(q/1000 \text{ m}^2)$
T ₁ 45 x 30 cm	8.75	22.46	9.64	18.54	1.91	137.58	97.99
T ₂ 45 x 45 cm	7.65	22.45	9.52	17.02	1.98	95.03	67.69
T ₃ 45 x 60 cm	7.21	22.50	9.76	19.23	2.38	85.79	61.10
T ₄ 60 x 30 cm	8.70	22.65	9.69	14.14	1.55	111.61	73.82
T ₅ 60 x 45 cm	6.99	21.96	9.33	16.82	2.08	99.69	65.94
T ₆ 60 x 60 cm	7.58	21.72	9.31	16.06	2.17	77.98	51.58
S.Em. ±	0.21	0.34	0.26	0.72	0.05	2.66	1.76
C. D. at 5%	0.61	NS	NS	2.07	0.15	7.63	5.05

Number of picking

Maximum numbers of picking (8.75) was recorded with treatment T_1 (45 x 30 cm) which remained at par with treatment T_4 (60 x 30 cm) i.e. 8.70. This might be due to the

more numbers of plant per unit area which required frequent picking operation. Similar, results also obtained by Prasad (2001) [5] in capsicum.

Number of fruits/plant

Maximum number of fruits per plant (19.23) was observed in treatment T_3 (45 x 60 cm), but it was at par with treatment T_1 (45 x 30 cm) i.e. 18.54. This might be due to proper utilization of space and nutrients resultant vigorous and healthy plant and ultimately more number of fruits per plant. Similar, result was also recorded by Manchanda *et al.* (1988) [4] in capsicum.

Yield (kg/plant)

Maximum yield 2.38kg/plant was recorded with treatment T_3 (45 x 60 cm). The wider plant density produced more vigorous crops than at closer density. The result of the experiment is in agreement with the findings of Edgar *et al.* (2017) ^[2], who also recorded the highest yield of capsicum with the closest plant density. Similar, results were also reported by Rodriguez *et al.* (2008) ^[6] and Manchanda *et al.* (1988) ^[4] in capsicum and Bhattarai *et al.* (2015) ^[1] in cherry tomato.

Yield (kg/plot and $q/1000 \text{ m}^2$)

Maximum yield (kg/plot and q/1000 m²) was observed in treatment T_1 (45 x 30 cm) i.e. 137.58 kg/plot and 97.99 q/1000 m². This might be due to more number of plant accommodate per unit area. Similar, results were also recorded by Prasad (2001) [5], Manchanda *et al.* (1988) [4] and Malshe *et al.* (2016) [3] in capsicum and Bhattarai *et al.* (2015) [1] in cherry tomato.

Conclusion

From the results obtained it can be concluded that for getting maximum number of fruits/plant and higher yield, planting of capsicum cv. Indra should be done at 45 x 30 cm in open ventilated poly house.

References

- 1. Bhattarai P, Kaushik R, Ameta KD, Jain HK, Kaushik MK, Sharma FL. Effect of plant geometry and fertigation on growth and yield of cherry tomato (*Solanum lycopersicon* var. cerasiforme) under zero energy poly house conditions. Indian J. Hort. 2015; 72(2):297-301
- Edgar ON, Gweyi-Onyango JP, Korir NK. Plant Row Spacing Effect on Growth and Yield of Green Pepper (Capsicum annum L.) in Western Kenya. Archives of Current Research International. 2017; 7(3):1-9.
- 3. Malshe KV, Palshetkar MG, Desai BG. Comparative study of different capsicum varieties under open and protected conditions. Plant Archives. 2016; 16(2):931-933.
- 4. Manchanda AK, Bhopal S, Singh B. Effect of plant density on growth and fruit yield of Bell pepper (*Capsicum annum* L.). Indian J. Agron. 1988; 33(4):445-447
- Prasad HN. Effect of plant density on growth and yield of capsicum grown under greenhouse and open conditions.
 M.Sc. (Agri) thesis. University of Agricultural Sciences GKVK, Bangalore Karnataka, India, 2001.
- 6. Rodriguez Y, Depestre T, Gomez O. Efficiency of selection in pepper lines (*Capsicum annuum* L.), from four subpopulations, in characters of productive interest. Ciencia e Investigacion Agraria. 2008; 35(1):29-40.