

P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com IJCS 2020; 8(5): 631-635 © 2020 IJCS

Received: 21-07-2020 Accepted: 29-08-2020

Manish Kumar

Department of Horticulture, (Floriculture and landscaping), Sam Higginbottom University of Agriculture Technology and Science, Prayagraj, Uttar Pradesh, India

Dr. VM Prasad

Department of Horticulture, (Floriculture and landscaping), Sam Higginbottom University of Agriculture Technology and Science, Prayagraj, Uttar Pradesh, India

Ragini Bhardwaj

Department of Horticulture, (Floriculture and landscaping), Sam Higginbottom University of Agriculture Technology and Science, Prayagraj, Uttar Pradesh, India

Corresponding Author: Manish Kumar

Department of Horticulture, (Floriculture and landscaping), Sam Higginbottom University of Agriculture Technology and Science, Prayagraj, Uttar Pradesh, India

Study on effect of pinching and gibberellic acid on growth, flowering and yield of African marigold (*Tagetes erecta* L.) under Prayagraj agro-climatic condition

Manish Kumar, Dr. VM Prasad and Ragini Bhardwaj

DOI: https://doi.org/10.22271/chemi.2020.v8.i5i.10372

Abstract

The present experiment was conducted to determine the response of Pinching and Gibberellic acid on growth, flowering and yield of African marigold (Tagetes erecta L.) in the Department of Horticulture, Sam Higginbottom University of Agriculture Technology and Science, Prayagraj, (U.P.) during the monsoon season 2019. 19 treatments were included in the trial viz; T0 Without pinching +spraying, T1 Pinching 30 days, T2 Pinching 35 days, T3 Pinching 40 days, T4 Pinching 45 days, T5 Gibberellic acid 100PPM, T₆ Gibberellic acid 200PPM, T₇ Gibberellic acid 300PPM, T₈ Pinching 30 days + 100 PPM Gibberellic acid, T9 Pinching 30 days + 200 PPM Gibberellic acid, T10 Pinching 30 days + 300 PPM Gibberellic acid, T₁₁ Pinching 35 days + 100 PPM Gibberellic acid, T₁₂ Pinching 35 days + 200 PPM Gibberellic acid, T₁₃ Pinching 35 days + 300 PPM Gibberellic acid, T₁₄ Pinching 40 days + 100 PPM Gibberellic acid, T₁₅ Pinching 40 days + 200 PPM Gibberellic acid, T₁₆ Pinching 40 days + 300 PPM Gibberellic acid, T₁7 Pinching 45 days + 100 PPM Gibberellic acid, T₁8 Pinching 45 days + 200 PPM Gibberellic acid, T₁₉ Pinching 45 days + 300 PPM Gibberellic acid were tested in three replication. The experiment of design was randomized block design. The results reveal that Pinching and GA3 treatments had significant response on plant height, number of branches per plant, number of node per plant, stem diameter plant spread per plant, number of flowers per plant, flower diameter, number of bud per plant, fresh weight of flower, dry weight of flower, flower yield per plant, flower yield per plot, and flower yield per hectare. The maximum plant height (56.750cm), Number of branches per plant (86.833), Plant spread (73.990), Number of node per plant (461.383), Stem diameter plant spread per plant (4.090), Number of flowers per plant (101.387), Flower diameter per plant (9.337), Number of bud per plant (101.887), Fresh weight of flower (12.160), Dry weight of flower (1.960), Flower yield per plant (495.333), Flower yield per plot (1.321kg), and Flower yield per hectare (6.604 t/ha.) were produced by the treatment (T13) Pinching 35 days + 300 PPM Gibberellic acid. It was the best treatment for good vegetative as well as yields Production.

Keywords: Marigold, gibberellic acid, pinching, flower and yield

Introduction

Flowers are the symbol of beauty, love and tranquility. They form the soul of garden and convey the message of nature to man. Flower cultivation has a great potential to Spain money, hence grown all over country in approximately 1,66,500 ha area with production of 1021 million tones loose flower and 66,671 crore cut flowers (NHB database, 2009-10). Out of total Floriculture area, 2/3rd area under traditional flower cultivation. The major traditional flowers of commercial significance are marigold, jasmine, China aster, rose, tuberose, crossandra and chrysanthemum. Among them, marigold occupies the top most position as flower.

Marigold (*Tagetes* spp.) is one of the most important flower crop grown commercially in different parts of India especially in the plains. The names Tagetes has been given after "Tages" a demigod known for its beauty. Marigold is short duration, free flowering, and hairy, hardy and evergreen crop belonging to family Compositae. It has gained popularity because of adaptability to various soil and climatic condition and longer blooming period. Marigold is known for its multifarious and diverse germplasm and is associated with festive

occasion, marriages, religious ceremonies and social function. The flower is endued with a wide spectrum of attractive colour, shape and size along with its good keeping quality. Beside its pristine uses, now marigolds are economically used as cut flower for interior decoration, in hanging basket, rock gardens, for landscaping purposes and for the beautification of mandaps and decoration of cars in marriages. Its leaf and flower are equally important for medicinal value (Tripathy et al., 1991). Leaf extract is good remedy for earache. Flower extract is a good blood purifier, a cure for blood piles, ulcer and eye diseases. The leaves of marigold plants are characterized by the presence of distinct odoriferous oil. Thearomatic oil extracted from marigold is called as tagetes oil. Essential oil of marigold has a great use in perfumery industries. The oil has bronchodilatory, antiinflammatory effect as well as juvenile hormone having insect repellent activities against flies, ants and mosquitoes. The Marigold plant is found beneficial to control nematode population when planted as intercrop and it was found effective as organic manure (Polthance and Yamazaki 1996). Marigold is not only grown as ornamental plant and cut flower but also as a source of nutritional supplement for poultry feed due to presence of an antioxidant, carotenoid pigment known as lutein. Since yellow and orange colour in marigold is due to the presence of this pigment hence lutein is added in poultry diet to intensify the yellow colour of egg yolks and broiler skin (Sreekala et al. 2003). Purified extract of marigold petals containing lutein dipalmitate is marked as ophthalmologic agent under the name of 'Adaptinol'.

Marigold is native of Mexico and South America from where it spread to different parts of the world during early part of 16th century. Tagetes erecta commonly known as African marigold is grown commercially as loose and cut flower in India and Central America and it has an added advantage that it is not season bound like other annual flower crop. Marigold plant needs plenty of sunshine and is grown in open sunny situation. There are about 33 species of genus Tagetes; among them some of the important species are Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Tagetes lucida, Tagetes lacera, Tagetes lemmonii, Tagetes minuta, Tagetes pysilla and Tagetes corymbosa. African marigold (Tagetes erecta) and French marigold (Tagetes patula) are of great horticultural importance and are commercially for their exquisite blooms. Among all the species of marigold, Tagetes minuta is valued for its harvest recovery of oil with superior quality. Tagetes minuta is commonly grown in Himachal Pradesh, Jammu and Kashmir and Uttarakhand. Sowing of marigold in September-October gave higher average Flower size, number of flowers per plant, flowering period and flower yield than other months (Mishra, 1997). Flower of marigold is capitulum that has an inner disc floret of short and tubular petals and outer ray florets of long and thin petals.

Material and methods

This study was conducted at experimental of the Department of Horticulture, Sam Higginbottom University of Agriculture Technology and Science, Prayagraj, 211007, (U.P.) India. In RBD during monsoon season of 2019 to optimize the pinching and GA3 in African marigold cv. Local Orange. Present experiment consists of two levels of pinching (no pinching & pinching + GA3 100,200,300 ppm) and 20 treatment combinations replicated thrice. The soil of the experimental field was sandy loam in texture and had pH

(6.87), E.C. (0.15 dSm-1) [1:2 soil water suspension (Jackson, 1967)] [4], organic carbon (0.45 %) [Walkley and Black's rapid titration method (Piper, 1966)] and 212.56 kg/ha available N [Alkaline permanganate method (Subbiah and Asija, 1956)] [15], 37.32 kg/ha available P2O5 [Olsen's method (Bray's method (Jackson, 1934))], 210.05 kg/ha available K2O [Flame photometric method (Jackson, 1973)]. Seeds were sown on 9th July, 2019 on raised nursery beds. 25 days old healthy and uniform seedlings were transplanted at different levels of spacing on 04th august, 2019. A basal dose of well rotten Farm Yard Manure @ 5 kg/m² was uniformly mixed in the soil 15 days before transplanting. Half dose of nitrogen (10 g/m²), full dose of phosphorus (20 g/m²) and potassium (10 g/m²) was supplied through urea, single super phosphate and muriate of potash, respectively as basal application at transplanting time. Remaining half dose of nitrogen (10 g/m²) was applied at 30 DAT. Different intercultural practices like gap filling, irrigating, staking, weeding etc. were performed as per crop requirement. Observations were recorded for various growth, flowering and yield parameters in African marigold. The data recorded during investigation were subjected to statistical analysis by using RBD for analysis of variance (ANOVA) as suggested by (Snedecor and Cochran, 1987).

Results and discussion Growth parameters

Plant height (cm): The data pertaining to the influence of pinching and GA3 and their combined treatments on plant height. It is evident from the data presented in Table 1. There was significant variation in plant height of *Tagetes erecta*. The data ranged significantly from 52.200 to 63.100 cm. Treatment T₁₃ (Pinching 35 days + GA3 300 ppm) produced maximum plant height (63.100 cm) and T₁₄ (Pinching 40 days + GA3 100 ppm) produced minimum plant height (52.200cm.). With T₀ (43.933cm.)

Number of branches per plant: It is evident from the data presented in Table 1. There was significant variation in number of branches per plant among different treatments in *Tagetes erecta*. The data ranged significantly from 65.320 to 86.833. Treatment T13 (Pinching 35 days + 300 PPM Gibberellic acid) significantly produced maximum number of secondary branches per plant (86.833) which was significantly higher than rest all treatments whereas the minimum number of branches per plant was recorded with T5 (GA3 100 ppm) treatment followed by T2 (Pinching 35 days) 77.447 and T0 (No pinching) 54.833.

Plant spread per plant (cm.): It is evident from the data presented in Table 1. There was significant variation in plant spread per plant among different treatments in *Tagetes erecta*. The data ranged significantly from 68.467 to 73.990. Treatment T₁₃ (Pinching 35 days + 300 PPM Gibberellic acid) significantly produced maximum plant spread per plant (73.990) which was significantly higher than rest all treatments followed by T₂ (Pinching 35 days) 71.050 whereas the minimum number of branches per plant was recorded with T₁₆ (Pinching 40 days + 300 PPM Gibberellic acid) (68.467) treatment and T₀ (No pinching + spraying) 64.680.

Number of node per plant: It is evident from the data presented in Table 1. There was significant variation in Number of node per plant among different treatments in

Tagetes erecta. The data ranged significantly from 407.330 to 461.383. Treatment T13 (Pinching 35 days + 300 PPM Gibberellic acid) significantly produced maximum number of node per plant (461.383) which was significantly higher than rest all treatments followed by T2 (Pinching 35 days) 447.997 whereas the minimum number of branches per plant was recorded with T5 (100 PPM Gibberellic acid) treatment and T0 (No pinching + spraying) 371.220.

Stem diameter (cm.): The data pertaining to the influence of

pinching and GA3 and their combined treatments on diameter of stem have been presented in Table 1. The data ranged significantly from 3.413 to 4.090. Treatment T₁₃ (Pinching 35 days + 300 PPM Gibberellic acid) significantly produced maximum stem diameter per plant (4.090) which was significantly higher than rest all treatments followed by T₂ (Pinching 35 days) 3.857 whereas the minimum number of branches per plant was recorded with T₁₉ (Pinching 45 days + 300 PPM Gibberellic acid) treatment and T₀ (No pinching + spraying) 3.857.

Table 1: Effect of pinching and GA3 on flower growth parameters of African marigold

	Treatments	Plant height (cm)	Number of branches/ plants	Plant spread/plant (cm.)	Number of node/ plants	Stem diameter (cm.)
T1	Pinching 30 days	55.933	68.113	70.293	429.607	3.530
T2	Pinching 35 days	60.800	77.447	71.050	447.997	3.857
T3	Pinching 40 days	55.233	68.257	70.400	410.273	3.573
T4	Pinching 45 days	55.500	69.723	70.367	409.217	3.627
T5	Gibberellic acid 100PPM	54.100	65.320	70.693	407.330	3.523
T6	Gibberellic acid 200 PPM	56.767	69.610	69.267	409.717	3.623
T7	Gibberellic acid 300 PPM	54.867	67.390	69.537	409.887	3.630
T8	Pinching 30 days + 100 PPM Gibberellic acid	56.367	68.837	69.893	422.663	3.580
Т9	Pinching 30 days + 200 PPM Gibberellic acid	56.400	71.163	70.003	413.053	3.407
T10	Pinching 30 days + 300 PPM Gibberellic acid	57.467	69.333	69.313	416.087	3.517
T11	Pinching 35 days + 100 PPM Gibberellic acid	59.533	68.220	68.520	409.720	3.600
T12	Pinching 35 days + 200 PPM Gibberellic acid	60.967	74.720	70.727	436.830	3.630
T13	Pinching 35 days + 300 PPM Gibberellic acid	63.100	86.833	73.990	461.383	4.090
T14	Pinching 40 days + 100 PPM Gibberellic acid	52.200	65.667	70.243	412.383	3.473
T15	Pinching 40 days + 200 PPM Gibberellic acid	57.733	71.443	69.053	421.273	3.430
T16	Pinching 40 days + 300 PPM Gibberellic acid	53.533	66.887	68.467	408.110	3.430
T17	Pinching 45 days + 100 PPM Gibberellic acid	52.533	72.277	69.847	414.107	3.453
T18	Pinching 45 days + 200 PPM Gibberellic acid	52.433	69.720	69.990	418.330	3.603
T19	Pinching 45 days + 300 PPM Gibberellic acid	55.200	69.110	70.330	418.610	3.413
T0	Without pinching +spraying	43.933	54.833	64.680	371.220	2.540
	C.D.	7.338	5.552	2.052	12.959	0.298
	SE(m)	0.113	1.932	0.714	4.509	0.104

Flowering characters

Number of Bud per plant: The data pertaining to the effect of pinching and GA3 and their combined treatments on Number of buds have been presented in Table 2. Significant variation was among the various treatments in *Tagetes erecta*. The treatment T13 (Pinching 35 days + 300 PPM Gibberellic acid) produced maximum Number of bud per plant (101.887 bud / plant) followed by T2 (Pinching 35 days) treatment i.e. (93.830bud / plant), however, it was statistically higher than other treatment. The minimum Number of buds was recorded in T4 (pinching 45 days) (88.273 bud / plant) with T0 Without pinching + spraying (75.550 bud / plant).

Number of flowers per plant: The data in respect of the number of flowers per plant as influenced by different treatment of pinching and GA3 and their combinations are presented in Table 2. The data ranged significantly from

81.940 to 101.387. The treatment T₁₃ (Pinching 35 days + 300 PPM Gibberellic acid) resulted in maximum number of flowers per plant (101.387.) followed by T₂ (Pinching 35 days) 87.443 and T₅ (Gibberellic acid 100 PPM) (81.940), whereas minimum number of flowers per plant was recorded with T₀ (Without pinching +spraying) (75.143).

Diameter of flower (cm): The data pertaining to the effect of pinching and GA3 and their combined treatments on flower diameter have been presented in Table 2. Significant variation was among the various treatments in *Tagetes erecta*. The treatment T9 (Pinching 30 days + 200 PPM Gibberellic acid) produced maximum diameter of flower (9.337 cm) followed by T1 (Pinching 30 days) treatment i.e. (8.253 cm.), however, it was statistically higher than other treatment. The minimum flower diameter was recorded in T8 (Pinching 30 days + 100 PPM Gibberellic acid) (6.503 cm) with T0 Without pinching + spraying (5.310 cm.).

Table 2: Effect of pinching and GA3 on flowering parameters of African marigold

	Treatments	Number of Bud per plant	Number of flowers per plant	Diameter of flower (cm)
T1	Pinching 30 days	92.163	84.833	8.253
T2	Pinching 35 days	93.830	87.443	7.413
T3	Pinching 40 days	92.493	86.443	7.193
T4	Pinching 45 days	88.273	84.330	6.607
T5	Gibberellic acid 100PPM	89.773	81.940	6.903
T6	Gibberellic acid 200 PPM	91.497	83.330	6.877
T7	Gibberellic acid 300 PPM	90.443	84.667	6.570

T8	Pinching 30 days + 100 PPM Gibberellic acid	91.440	84.500	6.503
T9	Pinching 30 days + 200 PPM Gibberellic acid	90.440	85.553	9.337
T10	Pinching 30 days + 300 PPM Gibberellic acid	92.497	82.000	7.563
T11	Pinching 35 days + 100 PPM Gibberellic acid	89.827	84.497	7.120
T12	Pinching 35 days + 200 PPM Gibberellic acid	92.887	87.163	6.860
T13	Pinching 35 days + 300 PPM Gibberellic acid	101.887	101.387	6.650
T14	Pinching 40 days + 100 PPM Gibberellic acid	88.997	81.500	6.887
T15	Pinching 40 days + 200 PPM Gibberellic acid	88.497	84.277	7.243
T16	Pinching 40 days + 300 PPM Gibberellic acid	91.493	83.277	7.230
T17	Pinching 45 days + 100 PPM Gibberellic acid	89.663	84.220	7.027
T18	Pinching 45 days + 200 PPM Gibberellic acid	90.887	82.887	7.327
T19	Pinching 45 days + 300 PPM Gibberellic acid	90.110	84.663	7.223
T0	Without pinching +spraying	75.550	75.143	5.310
	C.D.	5.378	3.722	0.624
	SE(m)	1.871	1.295	0.217

Yield characters

Flower yield per plant (gm.): The data on yield of flower per plant as influenced by pinching and GA3 and their combinations have been presented in Table 3. An appraisal of the data clearly revealed that the yield of flower per plant was significant difference was recorded. The maximum yield of flowers (495.333 g/plant) was recorded in T13 (Pinching 35 days + 300 PPM Gibberellic acid), followed by T2 (Pinching 35 days) (418.667 g/plant) however, the minimum flower yield (388.667g/plant) was recorded in T12 (Pinching 35 days + 200 PPM Gibberellic acid) with T0 Without pinching +spraying (299.00g/plant)

Flower yield per plot (kg.): The data on yield of flower per plot as influenced by pinching and GA3 and their combinations have been presented in Table 3. An appraisal of the data clearly revealed that the yield of flower per plot was significant difference was recorded. The maximum yield of flowers (1.321 Kg/plant) was recorded in T13 (Pinching 35 days + 300 PPM Gibberellic acid), followed by T2 (Pinching 35 days) (1.321 Kg/plant) however, the minimum flower yield (1.066 Kg/plant) was recorded in T15 (Pinching 40 days + 200 PPM Gibberellic acid) with T0 Without pinching +spraying (0.776 Kg/plant)

Fresh Weight of Flower (g): The data on Fresh weight of flower per plant as influenced by pinching and GA3 and their combinations have been presented in Table 3. An appraisal of the data clearly revealed that the Fresh weight of

flower per plot was significant difference was recorded. The maximum yield of flowers (12.160 g) was recorded in T9 (Pinching 30 days + 200 PPM Gibberellic acid), followed by T1 (Pinching 30 days) (9.987 g) however, the minimum flower yield (9.070 g) was recorded in T19 (Pinching 45 days + 300 PPM Gibberellic acid) with T0 Without pinching +spraying (6.613 g)

Dry weight of flower (G): Dry weight of flower was recorded as affected by different varieties is furnished in table 3. An appraisal of the data clearly revealed that the Fresh weight of flower per plot was significant difference was recorded. The maximum yield of flowers (1.960 g) was recorded in T9 (Pinching 30 days + 200 PPM Gibberellic acid), followed by T1 (Pinching 30 days) (1.453 g) however, the minimum flower yield (0.980 g) was recorded in T3 (Pinching 40) with T0 Without pinching +spraying (0.317 g)

Flower yield per hectare / ton. (G): Flower yield per ha. /t. was recorded as affected by different varieties is furnished in table no 3. An appraisal of the data clearly revealed that the Flower yield per ha was significant difference was recorded. The maximum yield of flowers (13.213 t/ha.) was recorded in T13 (Pinching 35 days + 300 PPM Gibberellic acid), followed by T2 (Pinching 35 days) (11.087 t/ha) however, the minimum flower yield (10.657 t/ha.) was recorded in T15 (Pinching 40 days + 200 PPM Gibberellic acid), with T0 Without pinching +spraying (7.762 t/ha.)

	Treatments	Flower yield/plant (gm.)	Flower yield/plot (kg.)	Fresh weight of flower (g)	Dry weight of flower (g)	Flower yield/hect are / ton. (g)
T1	Pinching 30 days	392.333	1.081	9.987	1.453	10.807
T2	Pinching 35 days	418.667	1.109	9.503	1.007	11.087
Т3	Pinching 40 days	389.000	1.087	9.080	0.980	10.867
T4	Pinching 45 days	398.000	1.087	9.380	1.053	10.867
T5	Gibberellic acid 100PPM	403.000	1.075	9.477	1.030	10.753
T6	Gibberellic acid 200 PPM	400.333	1.089	9.320	1.143	10.887
T7	Gibberellic acid 300 PPM	405.333	1.081	9.403	1.170	10.810
T8	Pinching 30 days + 100 PPM Gibberellic acid	402.667	1.105	9.283	1.030	11.050
T9	Pinching 30 days + 200 PPM Gibberellic acid	393.667	1.085	12.160	1.960	10.853
T10	Pinching 30 days + 300 PPM Gibberellic acid	409.667	1.085	9.910	1.247	10.850
T11	Pinching 35 days + 100 PPM Gibberellic acid	393.000	1.079	9.363	1.097	10.787
T12	Pinching 35 days + 200 PPM Gibberellic acid	388.667	1.074	9.387	1.063	10.743
T13	Pinching 35 days + 300 PPM Gibberellic acid	495.333	1.321	9.413	1.100	13.213
T14	Pinching 40 days + 100 PPM Gibberellic acid	403.667	1.093	9.463	1.063	10.927
T15	Pinching 40 days + 200 PPM Gibberellic acid	409.000	1.066	9.413	1.090	10.657
T16	Pinching 40 days + 300 PPM Gibberellic acid	395.667	1.104	9.400	1.010	11.043

T17	Pinching 45 days + 100 PPM Gibberellic acid	392.333	1.073	9.543	1.060	10.727
T18	Pinching 45 days + 200 PPM Gibberellic acid	393.333	1.076	9.230	1.060	10.760
T19	Pinching 45 days + 300 PPM Gibberellic acid	397.333	1.098	9.070	1.113	10.977
T0	Without pinching +spraying	299.000	0.776	6.613	0.317	7.763
	C.D.	18.637	0.033	0.837	0.175	0.331
	SE(m)	6.485	0.011	0.291	0.061	0.115

Conclusion

On the basis of present investigation, it is concluded that treatment (T13), I, e., in terms of Growth parameter (number of branches, Plant spread, Number of node, Stem dia meter), Floral parameter (Bud per plant, Number of flower per plant) and yield parameter (Flower yield per plant, Flower yield per plot) and in Plant height without pinching T10 followed by Plant height with pinching T17 and Flower parameter Diameter of flower in T9 and followed by in Yield fresh weight of flower, Dry weight of flower. Thus, it may be recommended that the African marigold cv. Local orange plants should be treated with T13 treatment (Pinching 35 days + gibberellic acid 300 ppm) as application) to improve the ultimate objective i.e. the yield of flower which may ensure us to get maximum net return.

References

- 1. Ahirwar MK, Ahirwar K, Shukla M. Effect of plant densities, nitrogen and phosphorus levels on growth, yield and quality of African marigold. Ann. Pl. & Soil Res. 2012; 14(2):153-155.
- 2. Badge S, Panchbhai DM, Don VN. Response of pinching and foliar application of gibberellic acid on growth and flower yield in summer African marigold. Res. on Crops. 2014; 15(2):394-397.
- 3. Chauhan SK, Ambast SK. Effect of salinity levels and plant spacing on growth and flowering behaviour of marigold. Ann. Pl. & Soil Res. 2014; 16(2):125-127.
- 4. Jackson ML. Soil chemical analysis. Asia Publishing House, Bombay, 1967.
- 5. Kour R, Khajuria S, Sharma M, Sharma A. Effect of spacing and pinching on flower production in marigold cv. Pusa Narangi Gainda in mid-hills of J & K state. The Asian J Hort. 2012; 7(2):307-309.
- Kumar V, Singh HK, Kumar A, Singh AK, Bhanupratap. Effect of planting distance and pinching on growth and flowering behavior of African marigold (Tageteserecta) cv. Pusa Narangi in Rainy season. Current. Adv. Agril. Sci. 2012; 4(1):79-81.
- 7. Maharnor SI, Chopde N, Thakre S, Raut PD. Effect of nitrogen and pinching on growth and yield of African marigold, Asian J Hort. 2011; 6(1):43-45.
- 8. Meena Y, Sirohi HS, Tomar BS, Kumar S. Effect of planting time, spacing and pinching on growth and seed yield traits in African marigold (*Tagetes erecta* L.) cv. Pusa Narangi Gainda. Indian J Agril. Sci. 2015; 85(6):797-801.
- Mohanty CR, Mohanty A, Parthi R. Effect of planting dates and pinching on growth and flowering in African marigold cv. Sirakole, 2015.
- Panse VG, Sukhatme PV. Statistical methods for agricultural workers. ICAR, New Delhi. Hans Publication, Bombay, 1995.
- 11. Pushkar NC, Singh AK. Effect of pinching and growth retardants on flowering and yield of African marigold (*Tagetes erecta* L.) cv. Pusa Narangi Gainda prog. Horti. 2012; 2(1):1-4.

- 12. Rathore I, Mishra A, Moond SK, Bhatnagar P. Studies on effect of pinching and plant bio regulators on growth and flowering of marigold (*Tagetes erecta* L.). Prog. Horti. 2011; 43(1):52-55.
- 13. Saxena M, Gandhi CP. Indian Horticulture Database. Annexure xiii, Ministry of Agriculture, National Horticulture Board, Gurgaon, India, 2014, 286.
- 14. Sharma AK, Chaudhary SVS, Bhatia RS. Efffect of spacing and pinching on regulation of flowering in African marigold under submontane low hill conditions of Himachal Pradesh. Prog. Agri. 2012; 12(2):331-336.
- 15. Subbiah BV, Asija GL. A rapid procedure for the determination of available nitrogen in soils. Current Sci. 1956; 25:259-260.