

P-ISSN: 2349–8528 E-ISSN: 2321–4902

www.chemijournal.com IJCS 2020; 8(5): 2028-2031 © 2020 IJCS

Received: 12-06-2020 Accepted: 16-07-2020

Jayashree N

Department of Floriculture and Landscape Architecture, College of Horticulture, Mudigere UAHS, Shivamogga, Karnataka, India

Chandrashekar SY

Department of Floriculture and Landscape Architecture, College of Horticulture, Mudigere UAHS, Shivamogga, Karnataka, India

Hemla Naik B

Department of Horticulture, UAHS, Shivamogga, Karnataka, India

Hanumantharava L

Department of Entomology, College of Horticulture, Mudigere UAHS, Shivamogga, Karnataka,

Ganapathi M

Department of Crop physiology, College of Horticulture, Mudigere UAHS, Shivamogga, Karnataka, India

Corresponding Author: Javashree N

Department of Floriculture and Landscape Architecture, College of Horticulture, Mudigere UAHS, Shivamogga, Karnataka, India

Influence of benzyl adenine and gibberellic acid on morphological behaviour of Asiatic lily

Jayashree N, Chandrashekar SY, Hemla Naik B, Hanumantharaya L and Ganapathi M

DOI: https://doi.org/10.22271/chemi.2020.v8.i5ab.10600

Abstract

An experiment on "Influence of benzyl adenine and gibberellic acid on morphological behaviour of Asiatic lily" was conducted at experimental block (protected condition) in the Department of Floriculture and Landscape Architecture, College of Horticulture, Mudigere (under University of Agricultural and Horticultural Sciences, Shivamogga), during 2019-2020. The experiment comprises of 16 treatments alone and in combinations of benzyl adenine (50, 100 and 150 ppm), gibberellic acid (100,150 and 200 ppm) and control (water soaking) replicated thrice in Randomized Complete Block Design (RCBD). The GA₃ @ 200 ppm exhibited earlier sprouting (6.00 days), maximum sprouting per cent (99.03), plant height (83.13 cm), number of leaves (67.25), leaf length (10.27 cm), leaf breadth (2.51 cm), leaf area (1139.00 cm²) and leaf area index (3.80). The Basal stem diameter (18.06 mm), chlorophyll-a (1.31 mg/g), chlorophyll-b (0.36 mg/g) and total chlorophyll (1.94 mg/g) recorded maximum in BA @ 150 ppm. While maximum days taken for bulb sprouting (12.12), minimum plant height (36.72 cm), number of leaves (29.33), leaf length (7.11 cm), leaf area (518.33 cm²) and leaf area index (1.71) recorded in the BA @ 150 ppm.

Keywords: Asiatic lily, Benzyl adenine (BA), Gibberellic acid (GA₃), vegetative parameters and protected condition

Introduction

Lilium is an important geophyte endowed with showy appealing flowers of different colour patterns and durable spikes belongs to the family liliaceae. The lily was known for purity and innocence. It is one of the six important genera of flower bulbs produced worldwide. It can be grown both as a cut flower and a pot plant, the beauty and charm of the blooms can enjoy throughout the year by selecting suitable cultivars. They also make an excellent and through force can be marketed throughout the year. It was originated in the northern hemisphere, many species are native to North America, Asia and Europe, though the lily is worldwide in distribution. The flower stem of lily is long and sturdy with luxuriant foliage and it has longer vase life. Lily requires a well-drained sandy loam soil with a pH of 6.5-7.5, and optimum EC of soil is 0.4-1.4 ds/m for cultivation. It performs better in partial shade and produces quality flowers at an optimum relative humidity of 80-85 per cent. Lily propagated through bulbs, bulblets and bulbils.

The growth regulator GA_3 are mainly involved in breaking dormancy of seeds and other aspects of germination and responsible for the elongation of internode, cell enlargement, flower quality and delay senescence of leaf and flower. The synthetic cytokinin like benzyl adenine play a major function like cell division, counteraction of apical dominance, promotion of chloroplast development and also helps in delay the senescence. The combined use of BA and GA_3 had many advantages concerning the bulbous flower crops in the production of good quality flowers and bulbs.

Material and Methods

The investigation on "Influence of benzyl adenine and gibberellic acid on Morphological behaviour of Asiatic lily" was carried out at experimental block (Protected condition) in the Department of Floriculture and Landscape Architecture, College of Horticulture, Mudigere (under University of Agricultural and Horticultural Sciences, Shivamogga), during 2019-2020.

The experiment was laid out in randomized complete block design with 16 treatments and 3 replications in which the bulbs are soaked in BA (50,100 and 150 ppm), GA₃ (100,150 and 200 ppm) alone and their combinations along with control (water soaking) for 12 hr and it was shade dried for 2 hr and planted with a spacing of 20 cm×15cm under the raised bed. The crop was fertilized with 30 g per m² of calcium nitrate, NPK of 20:20:20 g/m² in the form of urea, MOP and DAP. The cultural operations like irrigation, weeding, staking and earthing up are done during the experimentation as and when required. The observations are recorded and the data was analysed at CD 5%.

Results and Discussion

The existence of a significant differences with respect to days taken for bulb sprouting and the sprouting per cent of Asiatic lily are represented in Table 1.The bulbs treated with GA₃ @ 200 ppm had sprouted earlier (6.00 days) as compare to other treatments, however it was on par with GA₃ @ 150 ppm, GA₃ @ 100 ppm, BA @ 50 ppm +GA₃ @ 200 ppm and BA @ 50 ppm + GA₃ @ 150 ppm (6.49, 6.89, 8.17 and 8.23 days respectively) and maximum sprouting percent (99.03) are noticed in the treatment GA₃ @ 200 ppm which was on par with GA₃@ 150 ppm (98.00). This might be due to the free gibberellin was active in breaking down the reserve food material by hydrolytic enzymes and resulted in early and maximum sprouting per cent. whereas the BA @ 150 ppm had taken maximum days (12.12) for sprouting and minimum sprouting per cent (89.33) was observed in control might be due to the inhibitory effect of cytokinin at a higher concentration which had delayed the sprouting. The similar results are noticed with Ganesh et al. (2013) [7] in Tuberose, Bhosale et al. (2014) [4] in Tuberose, Sarkar et al. (2014) [17] in gladiolus and Ragini et al. (2019) [14] in Asiatic lily.

The bulbs soaked in GA₃@ 200 ppm exhibited maximum plant height (83.13 cm) it might be due to gibberellin in rapid cell division, cell elongation, and enlargement of cells at the intermodal region of the intercalary meristem, which promotes increase in vegetative growth. While the minimum plant height was noticed in the BA @150 ppm (36.72 cm) might be due to the inhibition of cell division and cell elongation at higher concentrations of benzyl adenine and also might be due to antagonistic effect. The similar views observed by Parmar *et al.* (2009) [13] in *Hymenocallis speciosa*, Kumari *et al.* (2018) [9] in Asiatic lily cv. Tresor and Rahman *et al.* (2020) [15] in gladiolus.

The maximum number of leaves recorded (67.25) in GA_3 @ 200 ppm. It may be due to gibberellin, which causes the rapid growth of the plant, in turn increases the photosynthetic rate of the plant by better water and nutrient uptake. In contrast, the minimum number of leaves (29.33) recorded in BA @ 150 ppm might be due to the inhibition of cell division and cell elongation at higher concentrations of benzyl adenine, which reduced the leaf number. The results are in conformity with Mishra *et al.* (2019) [12] in *Amaryllis belladonna* cv. Zepyranthes and Maheshwari and Sivasanjeevi (2019) [10] in Tuberose Cv. Single.

The significant differences were noticed on leaf length among the treatments GA_3 @ 200 ppm showed maximum leaf length (10.27 cm), which was on par with GA_3 @ 150 ppm and GA_3 @ 100 ppm (10.17 and 10.08 cm). It might be due to cell elongation and increases in the number of cells and the cell length contributed by the gibberellic acid led to increase in the leaf length, whereas the minimum length of the leaf (7.11cm) was found in the BA @150 ppm. It may be due to effect of benzyl adenine in counteracting the apical dominance and cell

elongation by encouraging the lateral branching instead of axillary growth. The results align with the findings of Sharma *et al.* (2006) ^[18] in Gladiolus, Manasa *et al.* (2017) ^[11] in Gladiolus Cv. Summer Sunshine and Rupa *et al.* (2017) ^[16] in *Polianthes tuberosa.*

The maximum leaf breadth (2.51cm) obtained with GA₃ @ 200 ppm. Whereas the minimum was found in control (1.30 cm). It might be due to the Gibberellin improves the sink strength of actively growing plant parts like immature leaves acts as metabolic sinks which support the growth and development of plant throughout the life cycle of the plant. Similar trends observed in Dogra *et al* (2012) ^[5] in Gladiolus and Rupa *et al*. (2017) ^[16] in *Polianthes tuberosa*.

The BA @ 150 ppm had exhibited maximum Basal stem diameter (18.06 mm), however it was on par with BA @ 150 ppm + GA₃ @ 100 ppm, BA @ 100 ppm + GA₃ @ 100 ppm, BA @ 150 ppm + GA₃ @ 100 ppm + GA₃ @ 150 ppm, BA @ 50 ppm + GA₃ @ 100 ppm and BA @ 50 ppm + GA₃ @ 200 ppm (18.04, 18.02, 17.29, 16.95 and 16.76 mm, respectively). Whereas minimum was observed in control (10.22 mm). It may be due to the accumulation of maximum carbohydrate reserve, which plays an important role in cell differentiation. The results conform with the EL-Sadek (2018) $^{[6]}$ in Dahlia and Ashwini *et al.* (2019) $^{[3]}$ in Gladiolus.

The results on leaf area are influenced by the different concentrations of benzyl adenine and gibberellic acid on the Asiatic lily. The maximum leaf area (1139.00 cm²) was obtained in GA₃ @ 200 ppm and the minimum leaf area was recorded in BA @ 150 ppm (518.33 cm²). This might be due to the growth promotion effect of gibberellin in rapid cell division and elongation of leaves caused the increased leaf area. Whereas the minimum leaf area was found in BA might be due to the reduced number, length and breadth of leaves in the plants are indirectly responsible for decreased leaf area. These results are similar to the work by Parmar *et al.* (2009) [13] in *Hymenocallis speciosa*, Ibrahim (2014) [8] in Freesia, Alpeshkumar *et al.* (2018) [2] in Tuberose and Ragini *et al.* (2019) [14] in Asiatic lily.

The maximum leaf area index obtained in GA₃ @ 200 ppm (3.80) and minimum leaf area index (1.73) was recorded in BA @ 150 ppm. The increased leaf area index in GA₃ treated plants might be due to the vital role of gibberellin in rapid cell division and elongation of leaves, whereas the minimum leaf area index may due to the minimum number of leaves and leaf area as compared to the other treatments. Similar views to the reports of Manasa *et al.* (2017) [11] in Gladiolus Cv. Summer sunshine and Ragini *et al.* (2019) [14] in Asiatic lily

The data regarding the chlorophyll content of leaves are varied significantly are showed in the figure 1. The BA @ 150 ppm showed maximum chlorophyll-a content of leaves (1.31 mg/g), which was on par with all the treatments except the bulbs treated with GA_3 @ 200 ppm (0.97mg/g), while minimum was observed in control (0.64 mg/g). The chlorophyll-b obtained maximum in BA @ 150 ppm (0.63 mg/g) which is on par with all the treatments, while the minimum was observed in control (0.36 mg/g).

The total chlorophyll content obtained maximum in BA @ 150 ppm (1.94 mg/g) which was on par with BA @ 100 ppm and BA @ 50 ppm (1.92 and 1.90 mg/g). while minimum was observed in control (1.00 mg/g). The increased photosynthetic pigment in benzyl adenine is might be due to the slower rate of chlorophyll degradation by delaying the protein breakdown by benzyl adenine. The results are conforming with Ahmed *et al.* (2017) [1] in Tulip and Sirisha and Naik (2017) [19] in Gladiolus indicated in Table 2

Table 1: Influence of benzyl adenine and gibberellic acid on vegetative parameters of Asiatic lily

Treatment		Days taken for	Sprouting	Plant height	Number of	Leaf length	Leaf breadth
No	Treatment details	bulb sprouting	per cent	(cm)	leaves	(cm)	(cm)
T_1	BA @ 50 ppm	9.67	94.12	44.12	41.26	8.53	1.96
T_2	BA @ 100 ppm	10.41	94.06	40.05	37.13	8.03	1.81
T ₃	BA @ 150 ppm	12.12	92.04	36.72	29.33	7.11	1.64
T_4	GA ₃ @ 100 ppm	6.89	97.04	67.05	53.27	10.08	2.12
T_5	GA ₃ @ 150 ppm	6.49	98.00	75.22	61.22	10.17	2.32
T_6	GA ₃ @ 200 ppm	6.00	99.03	83.13	67.25	10.27	2.51
T 7	BA@ 50 ppm + GA ₃ @ 100 ppm	9.03	91.00	61.12	37.31	9.26	2.01
T ₈	BA@ 50 ppm + GA ₃ @ 150 ppm	8.23	90.83	62.04	39.37	9.27	2.22
T ₉	BA @ 50 ppm + GA ₃ @ 200 ppm	8.17	93.04	62.13	44.29	9.35	2.26
T_{10}	BA @ 100 ppm + GA ₃ @ 100 ppm	9.17	93.00	55.04	33.15	8.63	1.91
T ₁₁	BA @ 100 ppm + GA ₃ @ 150 ppm	9.13	94.00	57.08	33.36	9.14	1.95
T ₁₂	BA@ 100 ppm + GA ₃ @ 200 ppm	9.07	95.00	59.11	34.09	9.32	2.00
T ₁₃	BA@ 150 ppm + GA ₃ @ 100 ppm	10.23	92.00	46.04	30.15	8.02	1.62
T ₁₄	BA @ 150 ppm + GA ₃ @ 150 ppm	10.17	94.00	48.04	30.49	8.41	1.70
T ₁₅	BA@ 150 ppm + GA ₃ @ 200 ppm	10.13	96.00	49.08	32.41	8.52	1.82
T ₁₆	Control(water soaking)	9.33	89.33	50.08	51.00	7.68	1.30
S.Em+		0.47	0.43	0.10	0.35	0.23	0.06
C.D @ 5%		1.36	1.24	0.29	1.05	0.67	0.18

Table 2: Influence of benzyl adenine and gibberellic acid on vegetative parameters of Asiatic lily

Treatment	Treatment details	Basal stem	Leaf area	Leaf area	Chlorophyll-a	Chlorophyll-b	Total chlorophyll
No	reatment details	diameter (mm)	(cm ²)	index	(mg/g)	(mg/g)	(mg/g)
T_1	BA @ 50 ppm	15.11	540.00	1.80	1.29	0.61	1.90
T_2	BA @ 100 ppm	14.38	589.33	1.96	1.30	0.62	1.92
T ₃	BA @ 150 ppm	18.06	518.33	1.73	1.31	0.63	1.94
T ₄	GA ₃ @ 100 ppm	11.18	974.33	3.25	1.19	0.52	1.71
T ₅	GA ₃ @ 150 ppm	11.24	1059.13	3.53	1.09	0.41	1.50
T ₆	GA ₃ @ 200 ppm	12.71	1139.00	3.80	0.97	0.40	1.37
T 7	BA @ 50 ppm + GA ₃ @ 100 ppm	16.95	821.50	2.74	1.11	0.51	1.62
T_8	BA@ $50 \text{ ppm} + GA_3 @ 150 \text{ ppm}$	16.76	848.38	2.83	1.10	0.49	1.59
T 9	BA @ 50 ppm + GA ₃ @ 200 ppm	14.16	863.45	2.88	1.07	0.48	1.55
T_{10}	BA @ 100 ppm + GA ₃ @ 100 ppm	18.02	806.12	2.69	1.16	0.51	1.67
T_{11}	BA @ 100 ppm + GA ₃ @ 150 ppm	15.28	821.54	2.74	1.14	0.55	1.69
T_{12}	BA @ 100 ppm + GA ₃ @ 200 ppm	15.03	827.71	2.76	1.13	0.52	1.65
T ₁₃	BA@ 150 ppm + GA ₃ @ 100 ppm	18.04	746.38	2.49	1.25	0.58	1.83
T_{14}	BA @ 150 ppm + GA ₃ @ 150 ppm	17.29	781.67	2.61	1.22	0.57	1.79
T ₁₅	BA @ 150 ppm + GA ₃ @ 200 ppm	15.14	785.74	2.62	1.16	0.54	1.70
T ₁₆	Control (Water soaking)	10.22	826.00	2.75	0.64	0.36	1.00
S. Em+		0.55	0.85	0.016	0.11	0.09	0.019
C.D @ 5%		1.60	2.46	0.045	0.32	0.26	0.056

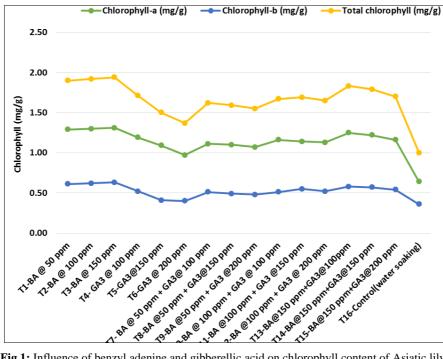


Fig 1: Influence of benzyl adenine and gibberellic acid on chlorophyll content of Asiatic lily

Conclusion

The GA_3 @ 200 ppm showed a significant difference among the treatments and exhibited the better results in related to the vegetative parameters. So for commercial production GA_3 @ 200 ppm can be recommended for achieving the better vegetative growth of the Asiatic lily.

References

- 1. Ahmed ZN, Kefaia GS, Al-Saad. Effect of benzyl adenine on growth, flowering and bulbs production of two tulip cultivars (*Tulip* Spp.). Tikrit. Agric. Sci. 2017; 17(1):79-90.
- 2. Alpeshkumar DS, Bhavesh P Naik, Rajeshbhai P, Patel V. Effect of plant growth enhancers on growth and flowering of tuberose cv. Prajwal. Int. J Chem. Stud. 2018; 6(6):1076-1079.
- 3. Ashwini A, Munikrishnappa PM, Balaji S Kulkarni, Rajiv K, Amreen T, Mohan, KS. Effect of plant growth regulators on vegetative and flowering parameters of gladiolus (*Gladiolus hybridus* L.) cv. Adigo Yellow. Int. J Chem. Stud. 2019; 7(2):1553-1556.
- 4. Bhosale N, Barad AV, Nilesh B. Effect of storage period and GA₃ soaking of bulbs on growth and flowering of tuberose (*Polianthes tuberosa* L.) cv. Double. Hort. flora. Res. Spectrum. 2014; 3(2):154-157.
- Dogra S, Pandey SK, Bhat DJ. Influence of gibberellic acid and plant geometry on growth, flowering and corm production in gladiolus (*Gladiolus grandiflorus*) under Jammu agro climate. Int. J Pharm. Bio. Sci. 2012; 3(4): 1083-1090.
- El-Sadek MA. Improvement in yield and quality of dahlia flowers by exogenous application of gibberellic acid and salicylic acid under sandy soil conditions. J Plant. Prod. 2018; 9(3):289-297.
- 7. Ganesh K, Soorianathasundaram and Kannan M. Studies on effect of plant growth regulators and micronutrients on growth, floral characters and yield of tuberose (*Polianthes tuberose* L.) cv. 'Prajwal'. Asian. J Hort. 2013; 8(2):696-700.
- 8. Ibrahim MM. Influence of corms size and spraying with benzyl adenine and paclobutrazol on growth and flowering characteristics of *Freesia* sp. l. plants. Swadeshi. J Sci. res. 2014; 1(6):1-10.
- 9. Kumari S, Kumar S and Singh CP. Effect of pre harvest sprays of hormones on spike quality and vase life of *Asiatic lilium* cv. Tresor. The Pharma. Innov J. 2018; 7(6):470-473.
- 10. Maheshwari TU, Sivasanjeevi K. Response of tuberose (*Polianthestuberosa*L.) cv. single to plant growth regulators. Ann. Plant. Soil. Res. 2019; 21(1):48-50.
- Manasa MD, Chandrashekar SY, Hanumantharaya L, Ganapathi M, Hemanth KP. Influence of growth regulators on vegetative parameters of gladiolus cv. Summer Sunshine. Int. J Curr. Microbiol. App. Sci. 2017; 6(11):1299-1303.
- 12. Mishra SK, Mishra S, Bahadur V. Effect of growth regulators on growth, yield and shelf life in amaryllis lily (*Amaryllis belladona*) cv. Zephyranthes. J Pharmacog. Phytochem. 2019; 8 (2):1217-1219.
- 13. Parmar AB, Patel HC, Chavda JC, Parmar JR. Effect of plant growth regulators on growth and flowering of spider lily (*Hymenocallis speciosa* L.). Asian. J Hortic. 2009; 4(1):170-172.
- 14. Ragini BK, Chandrashekar SY, Hemla NB, Shivaprasad M and Ganapathi M.Effect of bioregulators on vegetative

- parameters of asiatic lily var.Pavia under protected condition. Int. J Chem. Bio. Sci., 2019; 1(1):11-14.
- 15. Rahman A, Hussain I, Nabi G, Ziaullah. Exogenous gibberellic acid application influences on vegetative and reproduction aspects in gladiolus. Ornam. Hort. 2020; 26(2):244-250.
- 16. Rupa R, Sanya TM, Prasad KK. Influence of PGR and micronutrients foliar spray on tuberose (*Polianthes tuberosa*) under protected and open conditions. Int. J Agric. Sci. 2017; 9(42):4667-4670.
- 17. Sarkar MAH, Hossain MI, Uddin AFMJ, Uddin MAN, Sarkar MD. Vegetative, floral and yield attributes of gladiolus in response to gibberellic acid and corm size. Sci. Agri. 2014; 7(3):142-146.
- 18. Sharma DP, Krishna CY, Nishith G. Effect of gibberellic acid on growth, flowering and corm yield in three cultivars of gladiolus. J Ornam. Hortic. 2006; 9(2):106-109
- 19. Sirisha B, Naik MR. Flowering, physiological and biochemical response of gladiolus cv. Arka Amar to plant growth regulators and arbuscular mycorrhizal fungi (amf). Plant. Arch. 2017; 17(2):1117-1120.