Nutritional and therapeutic values of Coccinia grandis: A review

Neetu, Shalini Purwar, Vinita Bisht, Neeraj and Brijesh KR Maurya

DOI: https://doi.org/10.22271/chemi.2020.v8.i4o.9832

Abstract

Coccinia grandis also known as Ivy Gourd is a nutrient rich fast growing perennial vine plant of Cucurbitaceae family. It is a dioecious, perennial and herbaceous climber or trailing vine with glabrous stems and tuberous roots. Traditionally it is known for its medicinal and nutritional qualities and its all plant parts like roots, leaves and fruits are used in local medicinal purposes like jaundice, diabetes, wound healing, ulcers, stomach ache, skin disease, fever, asthma, cough. It is a wonderful vegetable plant species having various pharmacological properties like analgesic, antipyretic, anti-inflammatory, antimicrobial, antiulcer, antiabietic, antioxidant, hypoglycemic, hepatoprotective, antimalarial, antidyslipidemic, anticancer, antitussive, mutagenic.

Keywords: Analgesic, antioxidant, Coccinia grandis, cucurbitaceae, dioecious

Introduction

Coccinia grandis (Ivy gourd) is a member of Cucurbitaceae family. It is believed to origin of India (Nath, 1966) [46]. Ivy gourd is a perennial vine crop, grown in tropical and Sub-tropical region. Ivy gourd is grown for their immature tender fruits, test like a cucumber and are used as salad and preparation of various vegetable. In southern Asia, Ivy gourd is cultivated for its long slender edible young shoot and fruit (Linney, 1986) [34]. Ivy gourd has a many medicinal values. It is rich in vitamin C, which is straightening the bones. It also provided vitamin B1 and B2 and also small amount of vitamin A and tendril of Ivy gourd is also rich in mineral like potassium, calcium and iron. All part of plant are used for treating various disease, leaves extraction of Coccinia grandis for antibacterial activities (Bhattacharya 2010) [10, 11], root are used for antiabietic, skin diseases, removes pain in joint, urinary tract infection (Pekamwar et al, 2013) [48, 49] and to help in controlling diabetes (Shibib et al, 1993, Deokate and Khadabadi 2011) [57, 17]. In India, the family Cucurbitaceae is represented by 36 genera and 100 species (Chakravarty, 1982) [13]. Cucurbitaceae are a major family among economically important domesticated species, particularly those with edible fruits including cucumber (Cucumis sativus), melon (Cucumis melo), watermelon (Citrullus lanatus), squash and pumpkin (Cucurbita spp.), bitter melon (Momordica charantia), chayote (Sechium edule), loofah (Luffa spp.), bottle gourd (Lagenaria siceraria), snake gourd (Trichosanthes cucumerina var. anguina) and wax gourd (Benincasa hispida). Some of these represent the earliest cultivated plants and known for their medicinal properties and so many other uses. Since ancient times, particularly Lagenaria spp., those have hard- shelled fruits, which have been used to manufacture musical instruments and so many containers. It is indigenous species to Bengal and other parts of India. C. indica grows abundantly all over India, Tropical Africa, Australia, Fiji and throughout the oriental countries. The plant has also been used extensively in Ayurvedic and Unani practice in the Indian subcontinent (Wealth of India, 1992) [38]. It has long tuberous fleshy roots, smooth and green fruits. Microscopy of root shows parenchyma, phelloderm, pericyclic fibers, stone cells, starch grains. Some other Cucurbits are also used in the indigenous system of medicines they are; Lagenaria siceraria, Trichosanthes dioica, T. cucumerina, T. cucumera var. anguina, and Benincasa hispida are rich in protein and vitamin C. Each and every part of pointed gourd has high nutritional value. The roots contain amorphous Saponin. Species of Momordica spp. are used in diabetes. Citrullus lanatus seeds are used as cooling medicine. Coccinia grandis roots, stems, and leaves has been used to curing the skin diseases.
Fruits of melons are eaten when ripe and are also used in chronic eczema. Bottle gourd (Lagenaria siceraria), ribbed gourd (Luffa acutangula), white gourd (Benincasa hispida), cucumber (Cucumis sativus), and pointed gourd (Trichosanthes dioica) are some of the most common vegetables (Behl et al., 1993). Oil of this plant is used as an injection into chronic sinus. The plant is used in decoction for gonorrhoeae (Nadkarni, 1992) [39]. It has antilithic (Jayaweera, 1980; Nadkarni, 1976) [29, 43]. It is also useful to induce perspiration in fever and cures sores in the tongue (Anon., 1992) [8]. It has hypoglycemic (Presanna Kumar, 1963; Kumar et al., 1997) [16, 27, 13, 51, 44]. Vegetables are considered to be protective foods and highly beneficial for the maintenance of good health and prevention of diseases. Medical nutrition and pharmaceutical applications of plant origin will be the new research mandate for healthy future. Ivy gourd fruits are rich in lycopene (5.68 mg / 100 g), β-carotene (2.24 mg / 100 g) and leaves contain protein (3.3-4.9g), vitamin A (8000-18000 IU). Fruits are antidiabetic and having antioxidant property. In Ayurveda, it is used for skin eruption, tongue sores and earache. They are sources for nutrients such as carbohydrates, proteins, vitamins, fibre and minerals required for human health. According to some generous estimates, almost 80% of the present day medicines are directly or indirectly obtained from plants.

Nutritional Value of Coccinea grandis

Khatus K. et al., 2012 evaluated the different nutrient Components of *Coccinea grandis* are carbohydrate-12.62%, total protein- 15%, water soluble protein-11.25%, lipid-4.0%, total phenol-61.92mg/100g, vitamin C-25.55 mg/100g, β-carotene-70.05mg/100g, potassium-3.3 mg/100g, phosphorous- 1.15 mg/100g, sodium-0.95mg/100g, iron-2.23 mg/100g and calcium-3.79 mg/100 g. Fruits of *Coccinea grandis* contains steroids, saponin, ellagic acid, terpenoids, lignin, other compound like alkaloids, tannins, flavonoids, glycosides, phenols, B-amyrin acetate, lupeol, taraxerol, B-carotene, lycopene, cryptoxanthin, xylolucen, carotenoids and β-sitosterol.

Table 1: Nutritional value per 100g of edible portion (fruit) of *Coccinea grandis*

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>21 K Cal</td>
</tr>
<tr>
<td>Protein</td>
<td>1.4g</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>3.4g</td>
</tr>
<tr>
<td>Fat</td>
<td>0.2g</td>
</tr>
<tr>
<td>Calcium</td>
<td>25mg</td>
</tr>
<tr>
<td>Iron</td>
<td>0.9mg</td>
</tr>
</tbody>
</table>

Table 2: Phytochemical properties of different parts of Coccinea Chemical constituent of different plant parts of Coccinea (Deokate et al., 2011).

<table>
<thead>
<tr>
<th>Plant parts</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits</td>
<td>Taraxerone, taraxerol, and (24R)-24- ethylcholest- 5- en- 3β- ol glucoside. B- carotene, lycopene, cryptoxanthin, and apo- 6’- lycopenal B- sitosterol and taraxerol</td>
</tr>
<tr>
<td>Aerial parts</td>
<td>Heptacosane Cephalandrol, C29H58O tritriacontane C33H68 B- sitosterol alkaloids Cephalandrine a and Cephalandrine b.</td>
</tr>
</tbody>
</table>

Botanical description

Coccinia grandis is a fast-growing perennial vine crop that grows several meters long. It can form dense mats on lands that easily cover shrubs and small trees.

Leaves

Their leaves are arranged alternately along the stems; the shape of the leaves varies from heart to pentagon shaped. (Up to 10 cm wide and long). The upper surface of the leaf is hairless, whereas the lower is hairy and simple tendrils. There are 3-8 glands on the blade near the leaf stalk.

Flower

Flowers are star-shape, large and white in colour. The calyx has five subulate, recurved lobes, each 2-5 mm long on the hypanthium; peduncle 1-5 cm long. The corolla is white, campanulate, 3-4.5 cm long, deeply divided into five ovate lobes. Each flower has three stamens. The *Coccinia grandis* flower ovary is inferior. Staminate is solitary, rarely in axillary clusters of 2-3, pedicels 15-50 mm long, lobes of calyx is subulate, recurved, 2-5 mm long, corolla lobes ovate, white, long about 15-20 mm; pistillate flowers solitary on stalks10-30 mm long, hypanthium 10- 15 mm long (Starr et al., 2003) [62].

Fruit

The fruit of *Coccinia grandis* is red colour, shape ovoid to elliptical, 25-60 mm long, 15-35 mm in diameter, glabrous, hairless on stalks. Seeds 6-7 mm long, tan-colored and thick margins.

Root

The roots and stems are succulent in nature, tuberous and most likely facilitate the plant to survive prolonged drought. Dispersal of *Coccinia grandis* are done by the humans and also spread by birds and other animals, pigs, moved unintentionally on equipment or on wood and germinate where they land. Hybridization and clonal selection are one of the viable methods to develop improved clone in ivy gourd (Maurice et al., 2012; Ajmal Ali et al., 2005-2006) [38, 39].
Pharmacological Activities

Antibacterial
Bhattacharya et al. (2010) [10, 11] analyzed the aqueous extract of leaves of Cocinna grandis for antibacterial activity against Shigella flexneri NICE-D, Bacillus subtilis, Escherichia coli, Salmonella choleraeuis, Shigella dysenteries, and Shigella flexneri. Aqueous extract of Cocinna grandis showed more significant antibacterial activity in comparison to ethanol extract. A polar moiety of the extract is more responsible for antibacterial properties. The chloroform extracts of Cocinna cordifolia moderately active against Sarcina lutea, Bacillus subtilis, and Proteus mirabilis. Ethan acetate extracts active against staphylococcus aureus. Hexane extract active against the Sarcina lutea, Pseudomonas aeruginosa (Bulbul et al., 2011) [14]. Sivaraj et al. (2011) [60] has been evaluated the antibacterial activity of Cocinna grandis leaf extract with solvents like acetone, ethanol, methanol, aqueous and hexane against five bacterial species. Ethanol leaf extract of Cocinna grandis showed high antibacterial activity against S. pignes, E. Coli, B. Ceres, K. pneumonia and S. aureus (Sivaraj et al., 2011) [60]. Antibacterial activity of Cocinna grandis extract tested against the six gram positive and gram negative bacteria, Hexane extract moderately active against all gram positive and gram negative bacteria except Proteus mirabilis. Ethyl acetate extracts moderately antibacterial against all except Proteus mirabilis and staphylococcus aeruginosa (Farukhh et al., 2008; Tamilselvan et al., 2011) [24, 67].

Anthemimtic
Methanolic extract of Cocinna grandis posses the anthemimtic activity. Methanolic extract of Cocinna grandis acts through paralyzing the worm. (Tamilselvan et al. 2011) [67].

Antioxidant
Moideen (2011) [39] evaluated Ethanol extract of root of Cocinna grandis contain flavonoids. Methanol extracts of the fruit of Cocinna grandis posses the potent antioxidant activity. The methanol extract of Cocinna grandis contains glycoside and flavonoid. The antioxidant activity of Cocinna grandis is due to the reducing power ability, hydrogen peroxide scavenging potential (Deshpande et al., 2011) [1]. Ethanol and methanol extract shows the antioxidant activity (Ashwini et al., 2012) [6]. Cocinna grandis stem extract containing solvent petroleum, chloroform and ethyl acetate shows antioxidant activity. Ethyl acetate possess potent antioxidant activity than petroleum (Deshpande et al., 2011) [1]. Cocinna grandis methanol extract and leaf powder contain the antioxidant principle (Mujumder et al., 2008) [41].

Antilulcer
Aqueous extract of Cocinna grandis at doses of 250 and 500 mg/kg produced significant inhibition of the gastric lesions induced by pylorus ligation induced ulcer and ethanol induced gastric ulcer. The extract showed significant reduction in ulcer index, free acidity and gastric (Girish et al., 2011) [25]. On the other hand; Manoharan (2010) [37] studied the ethanol, aqueous and total aqueous extract for antilulcer activity in pylorus ligation induced gastric ulcer.

Antimalarial
Extract of Cocinna grandis shows excellent antiplasmodial activity against the Plasmodium falciparum (Sundaram et al., 2012) [63]. Aqueous leaf extract of Cocinna grandis decreases the SGPT, SGOT, ALP, total protein, blood urea nitrogen concentration. Hydrophilic moiety of Cocinna grandis extract is responsible for antimalarial activity. The extract significantly reduces the Plasmodium berghii parasite strength in mice (Samanta et al., 2011) [54]. The methanolic extract from Cocinna grandis which is used for reducing the larvicidal activity (Rahumann., 2008) [52].

Anti-inflammatory
Deshpande (2011) [1] evaluated the aqueous extracts of Cocinna grandis leaves and stem for the anti-inflammatory activity against formaldehyde induced paw edema in rats. The formaldehyde causes the cell damage and which provokes the production of histamine, prostagrandis bradykinin and serotonin. Aqueous extract of leaves showed more significant percentage inhibition of paw edema than the aqueous extract of the stem and standard, used as indomethacin. Formaldehyde induced inflammation results production of endogenous mediators, such as; histamine, serotonin, prostaglandins, and bradykinin treated with Cocinna grandis extract (Bernard et al., 1998) [9].

Antipyretic
Aggarwal (2011) [1] was evaluate methanolic extract of Cocinna grandis for antipyretic activity at the doses of 100 and 200 mg/kg in yeast-induced fever. The extract showed antipyretic activity by influencing the prostaglandin biosynthesis. Prostaglandin is considered as a regulator of body temperature.

Analgesic
Analgesic action of the active compound(s) in the methanol extract of Cocinna grandis May be mediated through peripheral but not central mechanism. Cocinna grandis reduce the complications produced by acetic acid (Aggarwal et al., 2011) [1].

Hypoglycemic
Mallick (2007) [35] studied the combined extracts of Musa paradisiaca and Cocinna indica aqueous extract of leaf for antidabetic activity in streptozotocin induced diabetes rats. The ethanolic extract of the aerial part decreases blood glucose levels and lipid parameters in streptozotocin induced diabetes rats at 100 or 200 mg/kg. Chronic administration of fruit extract 200 mg/kg for 14 days reduces the blood glucose level in alloxa induced diabetic rat (Gunjan et al., 2010) [26]. The aqueous extract of Cocinna indica reduced the blood glucose level; also reduced the cholesterol, protein and urea with prolonged treatment. Cocinna grandis stimulated gluconeogenesis, or inhibited glycothenolysis in the diabetic
rat liver. Treatment with Coccinia extract increases the total protein, SGPT, SGOT (Doss et al., 2008[20]. The *Coccinia indica* leaves extract exerts hypoglycemic activity on blood glucose and cholesterol, TG, LDL, VLDL level in alloxan induced diabetic rats (Manjula et al., 2007)[36]. The hypoglycemic activity of *Coccinia grandis* fruit evaluated by using alloxan induced diabetic rat. Ethanolic extract shows the decreased blood glucose level. Pectin from fruit reduces the blood glucose by decreasing the absorption of glucose from the intestine and increasing liver glycogen and decreasing glycogen phosphorylase. Combined Methanolic extract of leaves of *Coccinia indica* and *Salvadora oleoides* shows the hypoglycemic activity (SaklanI et al., 2012). Alcoholic extract of *Coccinia grandis* leaves (Eliza Jose, 2010) [23 and stem have the capacity to lower the blood glucose level in normal fasted rats (Doss et al., 2008) [20]. Ethyl acetate extract and petroleum ether extract of Coccinia contains triterpines, alkaloid, flavonoid, β -carotene which is responsible for the hypoglycemic activity.

Antifungal

Bhattacharya (2010) [10, 11] found the antifungal activity of the *Coccinia grandis* leaves extract against the *Candida albicans*-II, *Candida tropicalis*, *Aspergillus Niger*, *Saccharomyces cerevisiae*, *Candida tropicalis* II, *Cryptococcus neoformans* and *Candida albicans* ATCC. Aqueous extract is more sensitive for both strains of *Candida albicans* and Ethanolic extract is more sensitive for *Aspergillus Niger* and both strains of *Candida albicans* (Bhattacharya et al., 2010) [10, 11].

Hepatoprotective

Vadivu (2008) revealed the alcoholic extract of the fruit of *Coccinia grandis* for Hepatoprotective activity against CC14-induced Hepatotoxicity in experimental rats; Treatment with 250 mg/kg ethanolic extract of fruit significantly reduced the SGPT, SGOT and bilirubin level. Hepatoprotective activity of the extract may be due to the antioxidant effects of flavonoid found to be present in the fruits. Flavonoids, triterpens and tannin were antioxidant agent present in *Coccinia grandis* and may interfere with free radical formation confirmed that Hepatoprotective activities of certain flavonoids are known. (Vinothkumar et al., 2009; Anil Kumar. 2012; Dr. Krishnkumari et al. 2011; Sunilson., et al. 2009)[29, 4, 21].

Antidiyslipidemic

Singha (2007) [58] evaluated chloroform extract of *Coccinia grandis* leaves for antidiyslipidemic activity by lowering the triglycerides and cholesterol level in hamsters. Chloroform extract of *Coccinia grandis* leaves containing polyphenol, lowers the plasma lipid profile then increasing high density lipid cholesterol and total cholesterol ratio. C60-polyphenol isolated first time from this plant. It drastically decreased serum triglycerides by 42%, total cholesterol 25% and glycerol 12%, in high fat diet feed dyslipidemic hamsters at the dose of 50 mg/kg body weight. Aqueous and ethanolic extracts of leaves can be used for control of obesity (Mishra et al., 2012)[59].

Anticancer

There have so many vegetables occurred to reduce the risk of cancer. The anticancer activity of the *Coccinia grandis* is due to it antioxidant nature. The antioxidant nature of *Coccinia grandis* reduces the ferrocyanide to ferrous and Hydrogen peroxide scavenged from *Coccinia grandis* neutralizes to water (Behera et al., 2012)[47].

Bhattacharya (2011)[54] found the aqueous extract of leaves of *Coccinia grandis* for anticancer activity. Nitric oxide is a free radical which acting an important role in the pathogenesis of pain, inflammation. The antioxidant principle of *Coccinia grandis* decreases the nitrite generated by decomposition. Graded response produced by the cell is comparatively less. *Coccinia grandis* significantly reduced viable cell count and increased nonviable cell count suggesting comparable anticancer property with that of the reference drug (Vinblastine) (Nanasombat et al., 2009; Bhattacharya et al., 2011)[45, 54].

Antitussive

Pattanayak (2009) [47] analyzed the methanol extracts of the fruit of *Coccinia grandis* for analgesic activity and extensively used to get relief from asthma and cough by the indigenous people of India. The methanol extracts of the fruit of *Coccinia grandis* show the presence of alkaloid, tannin, steroid, triterpenoid, glycoside, carbohydrates and reducing sugar. The Antitussive activity of methanol extract has been compared with that of codeine (Antitussive drug). The methanol extract of *Coccinia grandis* fruit showed the significant decrease in cough induced by the chemical simulation similar to codeine phosphate in a dose dependant manner. The methanol extract produces maximum inhibition of cough at 90 min. The highest inhibition of cough (56.71%) was produced by the extract of the 400 mg/kg dose level at 90 min. The methanol extract act through the central nervous system.

Mutagenic effect

Aqueous extract of leaves of *Coccinia grandis* showed inhibition of growth and mutagenesis on *Neurospora crassa* by a gradual decrease of growth of mycelia. This result indicates that *Coccinia grandis* plant shows mutagenic effect on *Neurospora crassa*. (Bhuiyan et al., 2009)[12].

Alpha-amylase inhibition

Jaiboon (2011) [28] evaluated the methanolic extract of *Coccinia grandis* for alpha amylase inhibitory activity. The dried plant material extracted with 50% aqueous methanol (10 ml/g dry wt.) and redissolved in 50% aqueous DMSO (10 ml/g dry wt.) and subjected to alpha-amylase inhibitory activity. The *Coccinia grandis* showed the 81.13% of alpha amylase inhibitory activity.

Conclusion

Coccinia grandis is an important source of many pharmacological and medicinally important chemicals. In this review study *Coccinia grandis* medicinal plants play a fundamental role against various diseases. *Coccinia cordifolia* is a true miracle of nature because of the presence of effective chemical constituents responsible for diversified pharmacological applications. Also, it has been developed by some medicinal industries as a drug. The various parts of plant extracts have significant analgesic, antipyretic, anti-inflammatory, antimicrobial, Antitucer, antiinflammatory, antioxidant, anticancer, antitussive hypoglycemic, hepatoprotective, antimalarial, antidiyslipidemic.

Reference

35. Mallick Chhanda, Chatterjee Kausik, Mehuli Guha Biswas, Debidas Ghosh. The antihyperglycemic effect of the separate and composite extract of root of Musa paradisiaca and leaf of Coccinia indica in streptozotocin
52. Rahumann AA. Venkatesan larvicidal efficacy of five plant leaf extract against mosquito species. journal of parasitol research. 2008; 103:133-139.
