Major insects of stored food grains

KM Sheetal Banga, Sunil Kumar, Nachiket Kotwaliwale and Debabandya Mohapatra

DOI: https://doi.org/10.22271/chemi.2020.v8.i1aj.8624

Abstract

Insects are the major threat for causing the post-harvest losses in stored food grains. It causes the qualitative as well as quantitative losses in cereals, food legumes and oilseeds during the storage. To reduce the losses caused by insects, it is necessary to know the type of insects occurred in specific food grains. Damage caused by insect infestation in stored food grains affects the processing quality as well as reduced the nutritional quality. This article represents an overview of major insects of stored food grains.

Keywords: Insects, food legumes, oilseeds, cereals, storage

1. Introduction

About 10% of post–harvest losses are incurred in total food grains due to insects, rodents, micro-organisms, improper storage etc. In India, about 14 million tonnes (MT) of food grains of worth Rs. 7000 crores storage losses have been lost annually. Among these losses, insects alone are responsible for losses of about Rs. 1300 crores (Anonymous, 2015)[4]. Post-harvest losses due to storage and insect accounts for 2-4.2% (Kuamr and Kalta, 2017). Insects not only cause the losses in economic terms by consumption alone but also due to spreading contamination also. About 600 species of insects are occurred in stored grains and among these, about 100 species caused economic losses in stored grains (Neethirajan et al., 2007). Several types of insect occurs which causes the infestation in stored food grains– primary, secondary and tertiary insect. Some insects are behave as free-living insects, visualized to the eye during the first examination and hidden insects are those insects which exist in individual grains due to their immature stage or due to their development in the grains. Insect’s response to various natural and simulated features, classified into behavioral and metabolic responses. Movement of insects in stored grains in storage structures lies on environmental conditions. In the summer season, insect infestation occurs on the grain surface and disseminated in clumps throughout the mass, while in the winter season, insects flock in the lower and center portions of the storage structure. Attraction towards supportive conditions and evasion from fumigants, or treated surfaces comes into behavioral aspects whereas metabolic response includes the responses, which are used to promote or demote the development of insects (Bell, 2014)[11].

Primary insects are those which have the ability to bite or pierce intact and stable grains e.g. grain weevils (Curculionidae) major insect of stored cereal grains. Whole sound grains stable when its temperature and moisture content are below the levels required for germination. Primary insects attack the grain first. They have the ability to break down the hard seed coat of the whole grain and they laid the eggs inside the kernel, and the growing larvae cause the infestation inside of the kernel. Primary insects often develop and reproduce very quickly in the optimal conditions, which allows for large populations. They are usually more destructive than secondary pests, especially in short-term storage of food grains (Banga et al., 2018)[17]. Secondary insects follow the primary insects. They feed the grains that are broken by the primary insects, processed into products viz. flour, dal etc. or damaged by poor threshing, drying and handling e.g. red flour beetle (Tribolium castaneum) common secondary insect of wheat. Secondary insects eat the grain from the outside first. The presence of secondary insect often indicates that the grain is not in superlative condition and that measures should be implemented to protect the grain from a further decline in quality. Tertiary insects feed on broken grains, grain dust, and powder left by the primary and secondary insects.
Confused flour beetle is a tertiary insect of whole grains. Also, it is a secondary insect of milled grains such as flour.

2. Problems Due to Infestation
Infestation caused by insects imposed several losses viz. weight loss, viable value loss, and commercial value loss, nutritional loss health hazards, storability loss etc. (Neethirajan et al., 2007; Banga et al., 2018) [7]

3. Major Insects of Stored Food Grains
High post-harvest losses during storage are mainly occurred by two major groups of insects: Coleoptera (beetles) and Lepidoptera (moths and butterflies). Lepidoptera damage the grain during the larvae stage while in the case of Coleoptera, both larvae and adults damage the grain (Sallam, 2008) [44]. Coleoptera causes the more destruction in stored food grains as compared to Lepidoptera (Upadhyay and Ahmad, 2011) [64]. Prevention of insect infestation in stored food grains requires low moisture content and low temperature. The safe moisture content for long term storage of cereals should be below 12%, pulses are 10-12% and 7-9% for oil seeds (Chakravarty, 2014). The safe grain storage temperature for grains should be kept below 5 °C for mites, 15 °C for insects and 10°C for molds (Chakravarty et al., 2014) [14]. Evolution of insects molds and mites seized below 10% and 13% moisture content in stored food grains (Banga et al., 2018) [7]. Major insects of stored foodgrains with their classification, life span etc. is entitled in table 1. Bulk storage of food grains also affects the infestation rate, 50 MT or larger stored food grain in silos/bins cools slowly and hence may cause more spoilage as compared to the smaller structures with a capacity of 27 tonnes or lesser (Kumar & Rai, 2014) [25].

Table 1: Summary of Major Stored Food Grain Insects

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Family (order)</th>
<th>Scientific name</th>
<th>Survival commodity</th>
<th>Life span</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesser grain borer</td>
<td>Bostrichidae</td>
<td>Rhyzopertha dominica (Fabricius)</td>
<td>Infest all cereal grains, but mostly occurs in wheat, corn, rice and millet</td>
<td>25 days at 34 °C.</td>
<td>Edde, 2012 [16]</td>
</tr>
<tr>
<td>Granary weevil</td>
<td>Curculionidae</td>
<td>Sitophilus granarius (L.)</td>
<td>Wheat, corn, rye, oats, barley, sorghum</td>
<td>25-38 days at 30 °C and 70% RH</td>
<td>Pražič-Golič et al., 2011 [39]</td>
</tr>
<tr>
<td>Rice weevil</td>
<td>Curculionidae</td>
<td>Sitophilus oryzae (L.)</td>
<td>Rice, wheat, barley, occasionally peas</td>
<td>25 days at 29.1 °C and 70% RH</td>
<td>Batta, 2004 [9]</td>
</tr>
<tr>
<td>Maize weevil</td>
<td>Curculionidae</td>
<td>Sitophilus zeamais Motschulsky</td>
<td>Maize, Grain, pasta</td>
<td>26 days at 30 °C and 75 to 76% RH. About 10 generations in a year.</td>
<td>Rees, 2004 [40]; Kranz et al., 1997 [23]</td>
</tr>
<tr>
<td>Rusty grain beetle</td>
<td>Laemophloeidae</td>
<td>Cryptolestes ferrugineus (Stephens)</td>
<td>Wheat, barley, rye, triticale, oats, and occasionally milled products</td>
<td>Up to 9 months.</td>
<td>Neethirajan et al., 2007</td>
</tr>
<tr>
<td>Flour mill beetle</td>
<td>Laemophloeidae</td>
<td>Cryptolestes turcicus (Grouvelle)</td>
<td>Flour, damaged grain Waste grain</td>
<td>Average life span is 1 year, 17-37 °C and relative humidity 90%.</td>
<td>Neethirajan et al., 2007</td>
</tr>
<tr>
<td>Merchant grain beetle</td>
<td>Silvanidae</td>
<td>Oryzaephilus mercator (Fauvel)</td>
<td>Prefers processed cereals, and flours</td>
<td>14-46 days at 20 °C, and at optimum condition of 30-32.5 °C.</td>
<td>Pierce et al., 1990</td>
</tr>
<tr>
<td>Saw-toothed grain beetle*</td>
<td>Silvanidae</td>
<td>Oryzaephilus surinamensis (L.)</td>
<td>Oats, wheat, barley, animal feed, flax, sunflower</td>
<td>3-4 weeks at above 30 °C; longer life during cooler months.</td>
<td>Mowery et al., 2002</td>
</tr>
<tr>
<td>Long headed flour beetle</td>
<td>Tenebrionidae</td>
<td>Latheticus oryzae Waterhouse</td>
<td>Sorghum, maize</td>
<td>Adults live for up to 112 days, requires 25 °C requires for development to occur.</td>
<td>Atwa, 1986</td>
</tr>
<tr>
<td>Red flour beetle**</td>
<td>Tenebrionidae</td>
<td>Tribolium castaneum (Herbst)</td>
<td>Starched grains, oilseeds, Starchy materials, beans, peas</td>
<td>30 days in summer but longer life in winter.</td>
<td>Neethirajan et al., 2007</td>
</tr>
<tr>
<td>Confused flour beetle**</td>
<td>Tenebrionidae</td>
<td>Tribolium confusum</td>
<td>Grains, cereal products, flour, animal feed, sunflower, millet Starchy materials, beans, peas, spices</td>
<td>42 days at above 30 °C</td>
<td>Baldwin and Basilo, 2003 [6]</td>
</tr>
<tr>
<td>Large flour beetle</td>
<td>Tenebrionidae</td>
<td>Tribolium destructor Uyttengoogaart</td>
<td>Seeds, cereals, flour, stored grain, bran</td>
<td>Adults survive up to 1 year. Survive below 30 °C.</td>
<td>Schreurs and Janovy, 2008 [56]</td>
</tr>
<tr>
<td>Angoumois grain moth</td>
<td>Gelichiidae</td>
<td>Sitotroga cerealella (Olivier)</td>
<td>Wheat, barley, corn, rice, sorghum, millet</td>
<td>35 days at 30 °C and 75-76% RH.</td>
<td>Saikia et al., 2014 [43]</td>
</tr>
<tr>
<td>Indian meal moth</td>
<td>Pyralidae</td>
<td>Plodia interpunctella</td>
<td>Most common moth pest of stored grains.</td>
<td>28-35 days at optimum condition of 30-35 °C and 25% relative humidity.</td>
<td>Mewis and Ulrichs, 2001 [59]</td>
</tr>
<tr>
<td>Yellow mealworm</td>
<td>Tenebrionidae</td>
<td>Tenebrio molitor L.</td>
<td>Prefers decaying grain or milled cereals</td>
<td>Larvae survive up to 21 days at 15 °C.</td>
<td>Sadd et al., 2006 [42]; Upadhyay and Ahmad, 2011 [54]</td>
</tr>
<tr>
<td>Bean Weevil</td>
<td>Chrysomelidae</td>
<td>Acanthoscelides obtectus</td>
<td>Beans, lentil, chickpea, soybean</td>
<td>21-28 days at the temperature above 30</td>
<td>Regnault-Roger et al., 1995 [41]</td>
</tr>
</tbody>
</table>
3.1 Infestation in Cereals

In developing countries viz. India, about 50-60% of food grains are stored in traditional storage structures and at farm level (Anonymous, 2014; Kumar and Kalita, 2017) and about 30-40% losses are incurred in the grains due to insect infestation (Boxall, 2002; Abass et al., 2014). Losses incurred from insect infestation are boundless and commits quality loss, quantity loss, and grade (Harein and Meronuck, 1995). *Rhizopertha dominica* F. and *Trogoderma granarium* are the two most calamitous insects for stored cereal grains. In 1980, Boxall, (2002) reported the 50% losses in stored maize due to insect infestation. Pantenius (1988) found that about 80-90% losses during storage of maize occurred due to insect infestation. Jha et al. (2015) found that total storage losses including godowns, wholesale retailers, and processing unit acquired 0.86, 0.86, 0.75, 0.79, and 1.21% in wheat, paddy, maize, millet, and sorghum, respectively. Khaliqu et al. (2014) determined the nutritional losses in rice genotypes at 28 °C, 32 °C and 35 °C against *Tribolium castaneum* (*Herbst*). They found that insects caused reasonable losses in nutritional characteristics. Effect of storage and *Sitophilus granarius* on the technological properties of wheat was studied and found that kernel and fat content decreased, and due to this bread properties deteriorated (Keskin and Ozkaya, 2015). Larger grain borers (*Prostephanus truncatus*) and maize weevil (*Sitophilus zeamais*) major stored pest of maize, caused 23% losses during 6 months storage and 56.7% losses after 6 months storage (Kumar and Kalita, 2017, Abass et al., 2014 and Kimenju et al., 2010). Lesser grain borer is the most dangerous insect, caused about 30% weight loss in stored maize (Boxall, 2002) [13]. Patel et al. (1993) found that *R. dominica* caused 25% losses in stored wheat. Storage losses can be reduced by using the appropriate storage structures such as infestation level of *C. maculatus* on the seeds during the four months storage was reduced in Superior grain bags as compared to the PICS (Purdue Improved Crop Storage) bag (Bauca et al., 2014). Somavat et al. (2014) compared the results of hermetic bin bags, metallic bins and gunny bags and found that there was no infestation in hermetic bags after nine months of wheat storage and seed viability was higher (88%) in hermetically stored grains (Somavat et al., 2015 and Kumar et al., 2017).

Cereals and Pulses

<table>
<thead>
<tr>
<th>Flat grain beetle</th>
<th>Laemophloeidae (Coleoptera)</th>
<th>Cryptolestes pusillus (Schönherr)</th>
<th>Cereals and pulses</th>
<th>4-5 weeks and adults may survive up to one year. Larvae developed at a higher rate at 90% than at 70% relative humidity.</th>
<th>Millar et al., 1985 [30]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowpea beetle</td>
<td>Chrysomelidae (Coleoptera)</td>
<td>Callosobruchus maculatus</td>
<td>Cowpea, beans, peas, green gram</td>
<td>10-14 days. More proliferation in cooler months.</td>
<td>Tirosele, 2014 [31], Devi et al., 2014 [15]</td>
</tr>
<tr>
<td>Pulse beetle</td>
<td>Chrysomelidae (Coleoptera)</td>
<td>Callosobruchus chinesis (L.)</td>
<td>Green gram, lentil, chickpea, cowpea and pigeon pea</td>
<td>21 days at 30 °C and 70% RH.</td>
<td>Patel et al., 2005 [36], Pokharkar and Mehta, 2011 [38]</td>
</tr>
</tbody>
</table>

3.2 Infestation in Food Legumes

During storage of food legumes in storage or on farm structures prior to processing, many physiological changes occurs which causes the reduction in quantitative as well as qualitative and therefore economic losses (Bang et al., 2019) [3]. Mookherjee et al. (1970) and Gangrade (1974) found that infestation in pulses occurred due to *Callosobruchus chinesis*, *Callosobruchus maculatus* and *Callosobruchus analis* in India (Sivakumar, 2010). Among these species of genus *Callosobruchus, C. maculatus* and *C. chinesis* are one of the most calamitous insect during storage of cowpea, chickpea, mung, garden pea, black gram, lentil, and pigeon pea (Iturralde-Garcia et al., 2016; Banga et al., 2018) [7, 21]. These insect assails wild and cultivated legumes, specifically *Vigna radiata* (Messina and Mitchell, 1989) [28]. Losses incurred in stored pulses by *C. chinensis* infestation has been reported from Philippines, Japan, Indonesia, Sri Lanka, Burma, India and Bangladesh (Mahdi and Rahman, 2008) [27]. Gujar and Yadav, (1978) reported that about 55-69% seed weight loss and 45.6-66.3% loss in protein content of chickpea by the pulse beetle. In Nigeria, about 24% losses in stored pulses occurred due to *C. maculatus* (Taponjou et al., 2002). In tropical regions insect lead to 100% detrimental effects in stored pulses (Egwuatu, 1987) [17]. Birewar, (1984) reported about 9.5% of post-harvest losses in pulses, in which about 7.5% losses occurred due to storage alone. In chickpea and lentil, about 30% and 15% storage losses found in India, respectively. About 10-15% losses along with 50-92% germination losses are caused by bruchids in stored cereals and pulses (Haile, 2006) [20]. Mutungi et al. (2014) determined the efficacy of the PICS bags under natural infestation and artificial infestation in green gram and pigeonpeas and found the average change in infestation level of both the condition of PICS stored legumes. Singh et al. (2012) [22] evaluated the mortality of *C. chinensis*, treated by microwave radiation and found that seed viability and germination of chickpea, pigeon pea, and green gram decreased with microwave radiation exposed time and power.

Survive in both cereals and oilseeds

Survive in cereals, oilseeds, and pulses
level. Mohapatra et al. (2014) reported the effect of microwave heating on adult C. maculatus for different grain bed thickness and concluded that microwave heating had no significant effect on moisture loss, cooking time and protein content.

3.3 Infestation in oilseeds
A large variety of pests damage oilseeds and cause significant losses in the farms or during storages. Insects cause significant economic losses in oilseeds. Classification of oilseed insect pest depends on taxonomic grouping, distribution and feeding habitat. Insect infestation of sunflower kernels during storage affected the kernel and reduced the oil content due to increase in moisture content and temperature. Soybean can be safely stored at maximum safe drying temperatures are 43 °C for soybeans intended for seedling purposes and 49 °C for commercial use.

4. Conclusion
Insects infestation in stored grains causes a huge loss by contaminating it or by eating it. Therefore it is necessary to understand the behavior, type of insects and their life cycle to reduce the post-harvest losses. Knowledge of insects would also help in monitoring and assessment of their damage in stored food grains by adopting the suitable technology. It should be necessary to grain storage handlers to know about the insects morphology and apply the appropriate technology to reduce the losses caused by them. It is need of time to reduce the post-harvest losses of food grains to fulfill the requirement of increasing population.

5. References

37. Pierce AM, Pierce HD, Oehlschlager AC, Borden JH. Attraction of *Oryzaephilus surinamensis* (L.) and *Oryzaephilus mercator* (Fauvel) (Coleoptera: Cucujidae) to some common volatiles of food. Journal of chemical ecology, 1990; 16(2):465-475.

