

International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; SP6: 596-600

Satish Kumar Pandey Senior Research fellow, ICAR-IINRG, Namkum Ranchi, Jharkhand, India

Rajni Kiran Lakra

Department of Agronomy, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India

Usha Kumari

Department of Horticulture, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India

Twisha Chakravarty

Department of Biotechnology, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India

Corresponding Author: Satish Kumar Pandey Senior Research fellow, ICAR-IINRG, Namkum Ranchi, Jharkhand, India (Special Issue -6) 3rd National Conference On PROMOTING & REINVIGORATING AGRI-HORTI, TECHNOLOGICAL INNOVATIONS [PRAGATI-2019] (14-15 December, 2019)

Identification of most important weed species in direct sown finger millet crop under rainfed condition of Jharkhand

Satish Kumar Pandey, Rajni Kiran Lakra, Usha Kumari and Twisha Chakravarty

Abstract

A field experiment was conducted on weed management practices in direct sown finger millet at Agronomical farm, Birsa Agricultural University, Ranchi during *kharif* season of 2016. The weeds were randomly sampled from the fields of finger millet crop using a quadrate of size 0.25 m x 0.25 m randomly thrown at 3 different sites. The data were recorded on weed density, relative weed density, weed frequency, relative weed frequency and importance value index of weeds. The experimental data showed that total 19 plant weed species, belonging to 12 families were collected and identified from the study area. The major weeds found, infesting the experimental field were *Commelina bengalensis* (L.) - 14.13%, *Echinocloa crusgalli* (L.) - 11.63%, *Cyperus rotundus* (L.) - 9.97%, *Ageratum conyzoides* - 9.14%, *Commelina nodifolia* (L.) - 6.65%, *Oldenlandia corymbosa* - 6.65% and *Dactyloctenium aegyptium* (L.) - 5.68%. Broad-leaf weed species were dominant throughout the growing period of crop. Grassy, broad- leaf and sedges accounted for 24.37%, 60.40% and 15.23%, respectively of respective weed flora of the experimental field. Therefore, integration of chemical, cultural and mechanical methods might be an answer to achieve greater weed control efficiency, which in turn may increase over all benefit of finger milletcultivation.

Keywords: Weeds species, Rainfed condition and finger millet

Introduction

Finger millet (*Eleusine coracana* L. Gaertn) is an important Kharif season crop of small millet group cultivated in rainfed tracks of hilly regions. It is ranks 6th important crop of world after rice, maize, wheat, sorghum and barley. It comprises of 5% of the total land devoted to cereals (Shinggu *et al.*, 2009) ^[9]. It is grown on an area of 1.19 million hectare in India with a total production of 1.98 million tonnes and productivity of 1661 kg ha⁻¹. The major finger millet producing states are Karnataka, Tamil Nadu, Andhra Pradesh, Orissa, Bihar, Jharkhand, Gujarat, Maharashtra and the hilly regions of Utara Pradesh and Himachal Pradesh. The maximum area is covered in Karnataka 7.88 lakh hectare with a total production of 12.72 lakh tonnes and an average productivity of 1671 kg ha⁻¹ (Anonymous, 2015) ^[1]. It is grown in an area of 13914 hectare in Jharkhand with a total production of 10412 tonnes and with an average yield of 748 kg ha⁻¹ (Anonymous, 2016) ^[2]. The yield potential of finger millet in Jharkhand state is much lower than the national average. Since, the crop has slow growth habit in the initial stages; the weeds possessing faster growth habit can avail of this situation and offer severe competition to the crop for light, nutrients and moisture. The critical period of weed competition in finger millet is identified to be around 30 to 45 days after sowing and

further delay in the control of weeds leads to severe reduction in the grain yield was observed by Ramachandra Prasad *et al.* (1991)^[7].

There are nearly 30,000 weeds species in the world, out of these 50 to 200 mostly cause considerable damage to the major food crops (Mahmood and Niaz, 1992) ^[4]. In India mostly loss in crop production takes place because of unchecked weed growing in different crops. It is expected that is loss in finger millet production is about from 30% to 50% is due to weeds. The enhanced finger millet crop qualities by using new variety, increase biodiversity and keep away finger millet crop from adverse effects of pest and climatic condition (Walburger *et al.*, 1999) ^[12]. Therefore, the following experiment was conducted to identify different weed species and the most dominant weed species in direct sown finger millet crop under rainfed condition of Jharkhand.

Materials and methods Experimental area

A field experiment was conducted during *Kharif* 2016 at Agronomical Research Farm, Birsa Agricultural University, Ranchi, Jharkhand. The soil of the experimental field was sandy loam soil in texture with low in available organic carbon (3.13 g/kg soil) and available nitrogen (142.17 kg/ha) but medium in available phosphorus (18.55 kg/ha) and potassium (148.21 kg/ha) with a pH of 5.56.

Treatments and Experimental Design

The experiment consisting of twelve treatments was laid out in a randomized block design with three replications. The experiment was conducted in randomized block design replicated thrice with twelve different weed management practices viz., Pendimethalin (30 EC) @ 0.5 kg a.i./ha as preemergence (T1), Pendimethalin (30 EC) @ 0.75 kg a.i/ha as pre- emergence (T2), Bensulfuron methyl (0.6% G) + Pretilachlor (6.0% G) @ 2 kg/ha (pre-mix formulation) as pre-emergence (T3), Bensulfuron methyl (0.6% G) + Pretilachlor (6.0% G) @ 3 kg/ha (pre-mix formulation) as pre-emergence (T4), Isoproturon (50 WP) @ 0.5 kg a.i./ha as pre- emergence (T5), Pendimethalin (30 EC) @ 0.5 kg a.i./ha (PE) fb one inter-culture at 45 DAS (T6), Pendimethalin (30 EC) @ 0.75 kg a.i/ha as pre-emergence fb one inter-culture at 45 DAS (T7), Bensulfuron methyl (0.6% G) + Pretilachlor (6.0% G) @ 2 kg/ha (pre-mix formulation) as pre-emergence fb one inter-culture at 45 DAS (T8), Bensulfuron methyl (0.6% G) + Pretilachlor (6.0% G) @ 3 kg/ha (pre-mix formulation) as pre-emergence fb one inter-culture at 45 DAS (T9), Isoproturon (50 WP) @ 0.5 kg a.i./ha as pre-emergence fb one inter-culture at 45 DAS (T10), Weed free plot by one hand weeding at 20 DAS fb two inter-culture at 30 & 45 DAS (T11) and Weedy check (T12). The variety used for the experiment was A-404 with a spacing of 30 x 10 cm. A recommended dose of fertilizers (50:30:25 N: P2O5: K2O kg/ha) was applied equally to each plot. Nitrogen was applied in two splits. Half dose of N (25 kg/ha) along with full dose of P2O5 and K2O (30 and 25 kg/ha) were applied as basal and remaining N (25 kg/ha) was applied as top dressing after 30 days of sowing.

Data Collection

The weeds were randomly sampled from the fields of finger millet crop using a quadrate of size 0.25×0.25 m randomly thrown at 3 different sites.

The data were recorded on the following parameters:-

Weed flora

The weed flora associated with finger millet in the experimental field was identified at an interval of 60 days after sowing in weed check plot and listed accordingly. Weed flora was studied and classified into three categories viz: grasses, broad leaves and sedges.

Weed density m-2

Density of different weeds in each plot was studied at 60 day after sowing. An iron frame the quadrate, measuring 0.25 x 0.25 m was placed randomly at 3 spots in net plot area. Weeds within the quadrate were counted and classified into three categories viz: grasses, broad leaves and sedges. The observation was computed to give weed density or number of weeds per m^{-2} .

Relative weed density (%)

Relative weed density is the weed density of individual weed species with respect to the total weed density and it is expressed in percentage. It is calculated by using the following formula:

Relative weed density (%) = $\frac{\text{Density of individual weed species}}{\text{Total density of all weed species}} X 100$

Frequency (%)

Frequency can be a good indicator of the spatial distribution of a species within the experimental area. Weed frequency for each individual weed was computed by recording the occurrence of every weed in each quadrate and then multiplying with 100 for percentage as given in theformula. Ecological analysis of the weed flora was carried out to determine the relative frequency (%) using the equation provided by Wirjahadja and Pancho (1978)^[13]:

Frequency (%) = $\frac{\text{Number of quadrates placed where the species A occurred}}{\text{Total number of quadrates placed}} \times 100$

Relative frequency (%)

Relative Frequency was determined by counting and recording the weed species within a

 $0.25 \ge 0.25$ m quadrate was placed randomly at 3 spots in net area. It is calculated by using following formula:

Relative Frequency (%) =
$$\frac{\text{Frequency of species A}}{\text{Total frequency of all weed species}} X 100$$

Importance value indices (IVI)

The importance valve index for each individual weed was computed by adding the obtained valves of relative weed density and relative weed frequency, as given in the following formula:

IVI = (Relative weed density + Relative weed frequency) x 100

Results and Discussion Weed flora

Experimental field was infested with all three categories of weeds i. e. grassy, broad-leaf and sedges covering twelve families. Altogether 19 weed species (Grassy- 05, broad-leaf-12 and sedges- 02), belonging to 12 families were collected and identified from the study area (Table 1).

Weed density

The results on weed density of a particular species are shown in Table 2. The experimental field was infested with all three categories of weeds i.e. grassy, broad-leaf and sedges covering thirteen families. Altogether nineteen weed species were observed. Among grasses, Echinocloa crusgalli (84), Dactyloctenium aegyptium (41) and Eleusine indica Gaerts. (35), in broad-leaf category - Commelina bengalensis (102), Ageratum conyzoides (66), Commelina nodifolia (48), Oldenlandia corymbosa (48), Stellaria media L. (40), Alternanthra sessilis (36) and Coronopus didymus (32) and in sadges - Cyperus rotundus (72) and Cyperus esculentus (38) weeds were dominant. Upasani et al. (2012) [10] has also endorsed that among grassy weeds *Eleusine indica* Gaerts. Echinochloa crusgalli (L.) P Beauv. Were dominant species. Mukherjee et al. (2008)^[5] and Raj et al. (2013)^[6] have also reported Commelina benghalensis L. as dominant broad leaved weed associated in the experimental field. Similarly, Upasani et al. (2012) [10] and Raj et al. (2013) [6] observed Cyperus species as dominant sedges in their experimental field.

Relative Weed Density (%)

The major weeds found, infesting the experimental field were *Commelina bengalensis* (L.) - 14.13%, *Echinocloa crusgalli* (L.) - 11.63%, *Cyperus rotundus* (L.) - 9.97%, *Ageratum conyzoides* - 9.14%, *Commelina nodifolia* (L.) - 6.65%, *Oldenlandia corymbosa* - 6.65% and *Dactyloctenium aegyptium* (L.) - 5.68%. Broad-leaf weed species were dominant throughout the growing period of crop. Grassy, broad-leaf and sedges accounted for 24.37%, 60.40% and 15.23%, respectively of respective weed flora of the experimental field. Yadav *et al.* (2005) ^[14] also reported that broad-leaf weed species were dominant in finger millet crop throughout the growing period at different locations. The results on relative weed density (%) present in the field are presented in Table-4 and fig.1.

Weed frequency (%)

The weed frequency of weeds is the best way of indication for the prevalence of weed species in the studied area. The results on weed frequency (%) of a particular species are shown in Table 2. On the basis of the data provided the highest frequency was computed for *Echinocloa crusgalli* L. P. Beauv, *Commelina bengalensis* L., *Ageratum conyzoides* L. and *Cyperus rotundus*

L. (100% respectively); while, the lowest (13.88%) frequency was recorded for *Cynodon dactylon* Pers., *Sorghum halepense* L. Pers., *Anagallis arvensis* and *Euphorbia hirta*. The remaining weeds included in the Table-2 were of minor phytosociological status and relatively unimportant as far as finger millet production in the target area is concerned. The study also expressed that maximum species of the field were broad leaf weeds with least number of grassy. The highest

weed frequency in finger millet fields might be due to lack of weed management in the target area that's why, weeds reproduce more and are frequently occurring in finger millet crop. Saeed *et al.* (2010) ^[8] also reported the frequent occurrence of different weeds in their experiments. In a similar study, Khan *et al.* (2012) ^[3] also narrated the highest weed frequency for broad leaved weeds as compared to grassy weeds.

Relative weed frequency (%)

The relative weed frequency of weeds is the best way of indication for the prevalence of weed species in the studied area. The results on relative weed frequency (%) of a particular species are shown in Table 2. On the basis of the data provided the highest relative frequency was computed for Echinocloa crusgalli L. P. Beauv, Commelina bengalensis L., Ageratum conyzoides L. and Cyperus rotundus L. (9.60% respectively); while, the lowest (1.33%) frequency was recorded for Cynodon dactylon Pers., Sorghum halepense L. Pers., Anagallis arvensis and Euphorbia hirta. The remaining weeds included in the Table-2 were of minor phytosociological status and relatively unimportant as far as finger millet production in the target area is concerned. The highest weed frequency in finger millet fields might be due to lack of weed management in the target area that's why, weeds reproduce more and are frequently occurring in finger millet crop. Saeed et al. (2010)^[8] also reported the frequent occurrence of different weed species in their experiments. In a similar study, Khan et al. (2012)^[3] also narrated the highest weed frequency for broad leaved weeds as compared to grassyweeds.

Importance value index

The importance value index is important for understanding the status of a given weed specie in a weeds community. The data in Table-2 exhibits the highest importance value index (23.73%) was recorded for Commelina bengalensis L. followed by Echinocloa crusgalli L. P. Beauv (21.23%) and Cyperus rotundus L. (19.57%), while the lowest importance value index (2.44%) for Cynodon dactylon Pers., Sorghum halepense L. Pers., Anagallis arvensis and Euphorbia hirta. The highest importance value index of the above weed species is due to their high valve of relative weed density and relative weed frequency and are ought most important to be managed properly on time. The weeds should be control before threshold level, so that could not decrease finger millet productivity. These results are supported by those of Saeed et *al.* (2010)^[8] who observed the highest importance value index for kharif weeds in their investigations. Waheed et al. (2009) ^[11] concluded that weed species such as also uniformly observed with IVI ranging from 6.70-44.45%.

Table 1: List of weed flora observed in the experimental field of the direct sown finger millet

Common Name	English Name	Botanical Name	Family	Annual/ Perennial					
Grassy									
Sawa	Barnyard grass	Echinocloa crusgalli (L.) P. Beauv	Poaceae						
Makra	0Crow foot grass	Dactyloctenium aegyptium (L.)	Poaceae						
Banmadua	Goose grass	Eleusine indica Gaerts.	Poaceae						
Dub	Bermuda grass	Cynodon dactylon Pers.	Poaceae						
Jungli Sorghum	Johnson grass	Sorghum halepense (L.) Pers.	Poaceae						
Broad leaved									
Baskena	Day flower	Commelina bengalensis L.	Commelianaceae						
Mahkua	Tropical ageratum	Ageratum conyzoides L.	Asteraceae						
Kena	Common day flower	Commelina nodifolia (L.)	Commelianaceae						
Chimti	Diamond flower	Oldenlandia corymbosa	Rubiaceae						

International Journal of Chemical Studies

Haddapota	Chick weed	Stellaria media (L.) Vallars	Chlorphyllaceae					
Garundi	Wetland amaranth	Alternanthra sessilis (L.)	Amaranthaceae					
Bangajar	Swine-cress	Coronopus didymus (L.)	Brassicaceae					
Bundhania	Corn spurry	Spergula arvensis L.	Coryophyllaceae					
Safed murgfull	White Cock's comb	Celosia argetea L.	Amaranthaceae					
Hajardana	Gripe weed	Phyllanthus niruri Hook. F.	Euphorbiaceae					
Krishnanil	Scarlet pimpernel	Anagallis arvensis	Primulaceae					
Mothi dudh	Garden spurge	Euphorbia hirta	Euphorbiaceae					
Sedges								
Motha	Purple nut sedge	Cyperus rotundus L.	Cyperaceae					
Bara-nagar motha	Yellow nut sedge	Cyperus esculentus L.	Cyperaceae					

 Table 2: Weed density (m⁻²⁾, relative weed density (%), weed frequency (%), relative weed frequency (%) and IVI for the individual weed species of the direct sown finger millet

Botanical Name	Weed density (Number/m ²)	Relative Weed Density (%)	Frequency (%)	Relative Frequency	Importance value index				
Grassy									
Echinocloa crusgalli (L.) P. Beauv	84	11.63	100	9.60	21.23				
Dactyloctenium aegyptium (L.)	41	5.68	75.00	7.20	12.88				
Eleusine indica Gaerts.	35	4.85	55.55	5.33	10.18				
Cynodon dactylon Pers.	8	1.11	13.88	1.33	2.44				
Sorghum halepense (L.) Pers.	8	1.11	13.88	1.33	2.44				
		Broad leaved							
Commelina bengalensis L.	102	14.13	100	9.60	23.73				
Ageratum conyzoides L.	66	9.14	100	9.60	18.74				
Commelina nodifolia (L.)	48	6.65	83.33	8.00	14.65				
Oldenlandia corymbosa	48	6.65	83.33	8.00	14.65				
Stellaria media (L.) Vallars	40	5.54	75.00	7.20	12.74				
Alternanthra sessilis (L.)	36	4.99	55.55	5.33	10.32				
Coronopus didymus (L.)	32	4.43	27.77	2.67	7.10				
Spergula arvensis L.	16	2.22	19.44	1.87	4.09				
Celosia argetea L.	16	2.22	19.44	1.87	4.09				
Phyllanthus niruri Hook. F.	16	2.22	19.44	1.87	4.09				
Anagallis arvensis	8	1.11	13.88	1.33	2.44				
Euphorbia hirta	8	1.11	13.88	1.33	2.44				
		Sedges							
Cyperus rotundus L.	72	9.97	100	9.60	19.57				
Cyperus esculentus L.	38	5.26	72.22	6.93	12.19				
Total	722	100%	1041.59	100%					

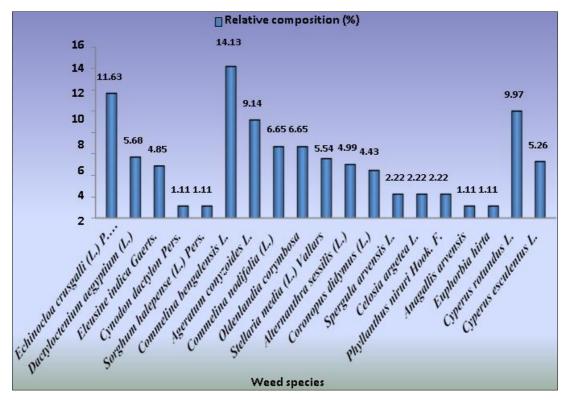


Fig 1: Relative density (%) of weed species observed during experimentation

Conclusion

There was a diverse weed flora present in finger millet fields indicating that finger millet is vulnerable to weed infestation and competition, as indicated by the important valve indices of the weeds. Among the different identified weeds *Echinocloa crusgalli* L. P. Beauv, *Commelina bengalensis* L., *Ageratum conyzoides* L. and *Cyperus rotundus* L. are the most problematic weed of finger millet crop in direct sown finger millet crop under rainfed condition of Jharkhand. This study provided very helpful knowledge to the scientific community about weed flora to design a solid integrated weed management plane in finger millet crop in the target area. Similar studies should be carried out for timely information and resolution of issues related to farming system.

References

- 1. Anonymous. Area, production and productivity of finger millet in India. Directorate of Economics and Statistics, 2015.
- 2. Anonymous. Area, production and productivity of finger millet in Jharkhand. Directorate of Agriculture Jharkhand, 2016.
- Khan MA, Wahid F, Kulsoom U. To investigate the major weeds of wheat in diffrent agro-ecological zones of khyber pakhtunkhwa Pakistan. Pakistan Journal of Weed Science Research. 2012; 19(1):59-70.
- 4. Mahmood TZ, Niaz SA. Weeds in cropped land at Islamabad, NARC, identification and control of weeds manual, national training course, Pakistan Agriculture Research Council, Islamabad, 1992, 79.
- 5. Mukherjee D, Sarkar A, Maity SK. Critical period of crop-weed competition in transplanted and wet-seeded kharif rice (*Oryza sativa* L.) under *Terai* condition. Indian Journal of Weed Science. 2008; 40(3-4):147-152.
- 6. Raj SK, Jose N, Mathew R, Leenakumary S. Chemical management of non-grassy weeds in direct-seeded rice. Indian Journal of Weed Science. 2013; 45(3):159-162.
- Ramachandra Prasad TV, Narasimha N, Dwarakanath N, Munegowda MK, Krishnamurthy K. Integrated weed management in drilled finger millet. Mysore Journal of Agricultural Sciences. 1991; 25:13-19.
- Saeed M, Ashfaq M, Gul B. Effect of different allelochemicals on germination and growth of horse purslane. Pakistan Journal of Botany. 2010; 43(4):2113-2114.
- Shinggu CP, Dadari SA, Shebayan JAY, Adekpe DI, Mahadi MA, Mukhtar A *et al.* Influence of spacing and seed rate on weed suppression in finger millet (*Eleusine coracana* L. Gaertn). Middle-East Journal of Scientific Research. 2009; 4(4):267-270.
- Upasani RR, Kumari P, Thakur R, Singh MK. Effect of seed rate and weed control methods on productivity and profitability of wetland rice under medium land condition. Indian Journal of Weed Science. 2012; 44(2):98-100.
- Waheed A, Qureshi R, Jakhar GS, Tareen H. Weed community dynamics in wheat crop of district Rahim Yar Khan, Pakistan. Pakistan Journal of botany. 2009; 41(1):247-254.
- Walburger AM, Klein KK, Folkins T. Diffusion of wheat varieties in three agro- climatic zones of western Canada. Canadian Journal of Agricultural Economics. 1999; 47:293-304.

- 13. Wirjahdja SD, Pancho JY. Weed survey sampling method and vegetation analysis. Biotropical Technology Bulletin. 1978; 4:20-20.
- 14. Yadav C, Ahmad S, Yadav MS. Integrated weed management in transplanted finger millet. Journal of Research (BAU, Ranchi). 2005; 17(2):253-255.