Evaluation of front line demonstration of blackgram var. PU-31, Soybean var. DSb-19 and Lentil var. HUL 57 in Bishnupur district, Manipur, India

Abstract
Front Line Demonstrations (FLD) on Blackgram var. PU-31, Soybean var. DSb-19 and Lentil var. HUL 57 were conducted by the Krishi Vigyan Kendra, Bishnupur district during the year 2017-2018 in the adopted farmer’s field in Bishnupur district of Manipur to show the higher production potentiality of the technique using improved variety. In Blackgram technologies gave higher yield of 8.53qt/ha in an average with 32.12% increase in average yield over farmer’s local practices. The study also registered improved technology gives higher gross return (Rs. 68240/ha.), net return (Rs. 39540/ha.) with higher benefit cost ratio (2.38:1) as compared to farmer’s local practices (1.67:1). In Soybean technologies gave higher yield of 9.14 Qt/ha in an average with 70.99% increase in average yield over farmer’s local practices. The study also registered improved technology gives higher gross return (Rs. 59410/ha.), net return (Rs. 28410/ha.) with higher benefit cost ratio (1.92:1) as compared to farmer’s local practices. In Lentil, the demonstration packages on high, low and average yield of Lentil were recorded 12.85 Qt/ha., 5.79 Qt/ha. and 12.60 Qt/ha., respectively. It was found higher than yield of local checked (9.86 Qt/ha.). The technology gap in the demonstration yield over potential yield was 2Qt/ha. The highest extension gap of 3Qt/ha was recorded. The technology index was 12 percents. The cultivation of Lentil var. HUL 57 under improved technologies gave higher net return of Rs 72800/ha., as compared to farmers practices Rs. 56880/ha. The benefit cost ratio of Lentil var. HUL 57 under improved technologies was 2.60:1 as compared to 2.58:1 under farmer’s practices.

Keywords: Front line demonstration (FLD), productivity, net return, B: C ratio, extension gap, technology gap

Introduction
India being one of the major pulse producing countries in the world contributes about 33 per cent of area and 25 per cent of world’s pulses production. According to FAOSTAT, 2012, India alone accounts for the 90% of global pigeon pea, 65% of chickpea and 37% of lentil production over 93%, 68% and 32% of the global production. Pulse have great significance in the context of Indian agriculture as they are high protein foods (17 to 25%) as compared to others like cereal crop that contributes to 6 to 10% of protein (Veeramani et al., 2017) [42]. It contributes to about 11% of the total proteins intake in India and frequency of consumption is much higher compared to other protein source indicating the importance of pulse in daily food habits (Reddy, 2010) [27]. In the year 2013-2014, India has produce 19.25 million tonnes of pulse from an area of 25.2 million hectare (Roy et al., 2017) [29], indicating slight incline in pulse productivity but which is far below the global average productivity (840 kg/ha) (Raj et al., 2013) [25]. In the North-eastern parts of India pulses are also grown mainly in the uplands and it had produces 209.3 thousand tonnes of pulses from an area of 252.8 thousand hectare with an average productivity of 828 Kg/ha during the year 2013 – 2014 and still the region is almost 82% deficit in pulse production against its requirements as per ICMR recommendation (Roy et al., 2017) [29]. Despite the significant pulse production during the last decade, the faster growth rate has imposed a bigger challenge for researchers, extension workers and policy makers to fulfill the ever increasing demand of it in India. (Raj et al., 2013) [29].

Black gram is a rich source of food protein containing about 24 per cent protein, which is almost three times that of cereals and other minerals and vitamins (Reddy, 2010, Anonymous, 2017) [27].
Black gram contributes to 10% of the national pulse production. The crop improves the soil fertility by fixing atmospheric nitrogen in the soil. It is reported that, black gram and green gram are reported to meet up to 50 per cent of their requirement from the N₂ fixed by them (Anon, 1972) [2] and black gram produces 22.10 kg of N ha⁻¹ which has been estimated to be supplement of 59 thousand tons of urea annually (Senaratne and Ratnasighe, 1993) [33]. In addition, it is also used as nutritive fodder, especially for milch animals (Sathe, 1996) [34]. In Manipur, Blackgram is major food crops among the pulses (Saikia et al., 2018) [30]. The Blackgram var. PU 31 is a bold seeded Yellow Mosaic Virus (YMV) tolerant blackgram variety with crop duration of 75-85 days depending on the environmental condition.

Soybean is an important oilseed and cash crop, which has a vital role in Indian agriculture, industry and export trade. Soybean possesses a very high nutritional value along with high yield potential. It contains about 40% high quality protein and 20% oil (Verma et al., 2013, Singh, 2018) [34, 38]. The planted area under soybean in India is above 6.50 million ha, which produces above 7.00 million tonnes of soybean with an average productivity 1.070 kg. ha⁻¹ (Patil et al., 2010) [20]. Soybean ranked first in the world in oil production (57%) (Raj et al., 2014) [26] and in the international trade markets (Meena et al., 2012). Soybean is the also major oilseed crop of Manipur that boosted the economy of the state (Raj et al., 2014) [28]. Traditionally, it is consumed as fermented alkaline food “Hawaijar”. Small-seeded local variety soybean grown in the hilly terraces of Manipur is used to prepare hawaijar (Tamang, 2015) [41].

Lentil (Lens culinaris), a pulse crop is one of the oldest pulse crops in India and nutritionally it tops among the other Rabi pulses. Although India ranks first in the world in respect of production as well as acreage, the average productivity is significantly poor (714kg/ha) far below the world average productivity 1008 kg/ha (Afzal Ahmad et al., 2012) [1]. Lentil being the most actively traded pulse crop, it have also been proven to be invaluable in crop rotation, controlling of weeds, diseases and insects, as well improving soil texture and fertility. It is the need of the hour for wider adoption of low-cost technology among all pulse crops in order to meet the increasing demand both domestically as well as globally. The study was conducted with the aim to promote and extend improved technologies using improved seed varieties, micro-nutrients, soil amendments, integrated pest management techniques, farm machinery and implements, irrigation devices along with capacity building of farmers. This project was implemented by Krishi Vigyan Kendra, Bishnupur district with main objective to boost the production and productivity of lentils through FLDs with latest and improved technologies besides the speed spread of new technology of lentil in Bishnupur district of Manipur.

Materials and Methods

The present study was carried out Front Line Demonstrations (FLD) on Blackgram var. PU-31, Soybean var. DSb-19 and Lentil var. HUL 57 were conducted by the Krishi Vigyan Kendra, Bishnupur district during the year 2017-2018 in the adopted farmer’s field in Bishnupur district of Manipur to show the higher production potentiality of the technique using improved variety. The study was carried out to demonstrate the production and economic benefit of adopting improved technologies through line transplanting in each of the 20 (Twenty) adopted farmer’s field covering an area of 10 ha. The improved technology included modern varieties, seed treatment and maintenance of optimum plant population etc. The fertilizers were given as per improved practices as basal dose. Pest and diseases management were done routinely. The crops were harvested at perfect maturity stage with suitable method. In demonstration plots, critical inputs in the form of quality seed and treatment, farm manure, balanced fertilizers and agro-chemicals were provided by KVK, Bishnupur. For the study, technology gap, extension gap and technology index were calculated as suggested by Samui et al (2000) [31].

Technology gap = Potential yield- Demonstration yield

Extension gap = Demonstration yield-Farmers yield

Technology gap

Technology index (%) = ----------------------x 100

Potential yield

Results and Discussion

Yield

The demonstration packages on high, low and average yield of Blackgram var. PU-31 were recorded 11.80 Qt/ha., 6.90 Qt/ha., and 8.53 Qt/ha., respectively. It was found higher than yield of local checked (5.79 Qt/ha.). The results indicated that the front line demonstrations have given a good impact over the farming community of Kumbi, Bishnupur district as they were motivated by the new agricultural technologies applied in the FLD plots. The demonstration packages on high, low and average yield of Soybean var. DSb-19 were recorded 11.50 Qt/ha., 7.20 Qt/ha., and 9.14 Qt/ha., respectively. It was found higher than yield of local checked (5.42 Qt/ha.). The results indicated that the front line demonstrations have given a good impact over the farming community of Bishnupur district as they were motivated by the new agricultural technologies applied in the FLD plots. Average soybean yield under front line demonstrations was observed higher (70.99%) over the prevailing farmers practice. The demonstration packages on high, low and average yield of Lentil were recorded 12.85 Qt/ha., 5.79 Qt/ha., and 12.60 Qt/ha., respectively. It was found higher than yield of local checked (9.86 Qt/ha.). The results indicated that the front line demonstrations have given a good impact over the farming community of Bishnupur district as they were motivated by the new agricultural technologies applied in the FLD plots. This finding is in agreement with the findings of Kumar and Yadav (2007), Poonia and Pithia (2010) [12].

Technology gap

The technology gap in the demonstration yield of Blackgram var. PU-31 over potential yield (10Qt/ha.) was 1.47Qt/ha. The technology gap in the demonstration yield of Soybean var. DSb-19 over potential yield was 10Qt/ha. The technology gap in the demonstration yield of Lentil over potential yield was 2Qt/ha. The technological gap may be attributed to the dissimilarity in the soil fertility status and weather conditions (Mukharjee, 2003). Hence, variety wise location specific recommendation appears to be necessary to minimize the technology gap for yield level in different situations (Rachhoya et al., 2018) [24].

Extension gap

The extension gap of 2.74Qt/ha was recorded in Blackgram var. PU-31. The extension gap of 3.72Qt/ha was recorded in Soybean var. DSb-19 and the extension gap of 3Qt/ha was

~ 835 ~
recorded in Lentil. This emphasized the need to educate the farmers through various means for the adoption of improved agricultural production technologies to reverse this trend of wide extension gap. More and more use of latest production technologies with high yielding variety will subsequently change this alarming trend of galloping extension gap. The new technologies will eventually lead to the farmers to discontinue the old technology and to adopt new technology. This finding is in corroboration with the findings of Hiremath and Nagaraju (2010) [60].

Technology Index
The technology index were 14.7 percent, 45.45 percents and 12 percents; found in Blackgram, Soybean and Lentil respectively. The technology index shows the feasibility of the evolved technology at the farmer’s fields and the lower the value of technology index more is the feasibility of the technology (Jeengar, et al., 2006) [9].

Economic return
The cultivation of Blackgram var. PU-31 under improved technologies gave higher net return of Rs. 39540/ha, as compared to farmers practices Rs. 18571/ha. The benefit cost ratio of Blackgram var. PU-31 under improved technologies was 2.38:1 as compared to 1.67:1 under farmer’s practices. The cultivation of Soybean var. DSb-19 under improved technologies gave higher net return of Rs. 28410 /ha, as compared to farmers practices Rs. 7230/ha. The benefit cost ratio of Soybean var. DSb-19 under improved technologies was 1.92:1 as compared to 1.23:1 under farmer’s practices. The cultivation of Lentil var. HUL 57 under improved technologies gave higher net return of Rs 72800/ha, as compared to farmers practices Rs. 56880/ha. The benefit cost ratio of Lentil var. HUL 57 under improved technologies was 2.60:1 as compared to 2.58:1 under farmer’s practices. This may be due to higher yields obtained under improved technologies compared to local check (farmers practice). This finding is in corroboration with the findings of Mokidue et al (2011) [16].

Conclusion
It can be concluded that frontline demonstration exercised under the close supervision of extension workers and scientists is one of the important tool for agricultural extension for rural communities to demonstrate newly released crop production and protection technologies and its management practices in the farmer's field under different agro-climatic regions and farming situations. Hence, from the study that there exists a wide gap between the potential and demonstration yields in Blackgram, Soybean and Lentil mainly due to technology and extension gaps and also due to the lack of awareness about new technology in Bishnupur district of Manipur. The higher average yield was recorded in demonstration plots over the years compared to local check due to increased knowledge and adoption of full package of practices. Hence, it is concluded that the FLDS programme is a successful tool in improving the production and productivity of blackgram, Soybean and Lentil crops through FLDS with latest and specific technologies.

References
15. Mishra B. More crop per drop. The Hindu, Survey of Indian Agriculture, 2005, 41

36. Sharma V, Kumar V, Sharma SC, Singh S. Productivity enhancement and popularization of improved production technologies in Wheat through frontline demonstrations.