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Abstract 

In this review article, we describe various QTLs that are associated with abiotic stress tolerance in maize. 

As we know, as global climate is becoming unpredictable and erratic. Yield in maize is affected by 

abiotic stress caused by unfavourable environment. So, exploiting QTLs associated with abiotic stress is 

the one of the way to achieve yield increase in maize. This review tells how QTL-based approaches has 

helped in improving the maize crop to perform well under various kinds of abiotic stresses. Success can 

be achieved by the identification of large effect QTLs that are linked with abiotic stress tolerance related 

traits. The QTL approach therefore provides a way to investigate out the various components affecting 

source sink relationships of maize plants under abiotic stress. 
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Introduction 

There is evidence that global mean temperatures are increasing and the climate is becoming 

increasingly erratic, with increased drought in some areas and more and stronger storms (IPCC 

2007) [15]. The future challenges of crop production in the tropics, especially in certain arid and 

semi-arid areas of Africa, will be related to higher temperatures and less rainfall (Sivakumar et 

al. 2005) [49]. 

The increase in yield of maize many folds is probably possible through the direct or indirect 

exploitation of quantitative trait loci (QTLs) which control heritable variance of traits and 

various physiological mechanism of maize in different environment. This review probe how 

QTL-based approaches contribute has helped in improving the maize crop to perform well 

under various abiotic stresses (drought, water logging, and heat) so that it can help further 

breeders to release varieties in maize. 

The performance of any crop under a particular environment is the resultant of the action of 

thousands of gene with that particular environment. Success can be achieved by the 

identification of large effect constitutive QTLs for abiotic stress tolerance related traits and 

their validation in a related mapping population. The QTL approach provides an opportunity to 

investigate out the genetic and physiological components affecting source sink relationships 

under abiotic stress (Prioul et al., 1997, 1999; Miralles and Slafer, 2007; Welcker et al., 2007) 

[35, 34, 29, 55] 

 

QTLs for drought tolerance in maize 

Among the different abiotic stresses drought is by far the most complex and devastating one 

globally (Pennisi, 2008) [33]. Drought at any stage of plant development affects grain 

production, but causes maximum damage in maize when it occurs around the time of 

flowering (Banziger et al. 2007) [2]. A commonly used secondary trait for drought tolerance in 

maize is the asynchrony between silk emergence and pollen shedding. Under water-limited 

conditions, this asynchrony, termed the anthesis–silking interval (ASI), is highly correlated 

with grain yield (Edmeades et al. 1993) [10], which has been extensively studied through 

linkage analysis (Ribaut 2009) [39]. 

A number of studies have revealed QTLs for root architechture and have investigated their 

effects on yield under various moisture conditions in maize (Tuberosa et al., 2002, 2003; 

Landi et al., 2007) [51, 52, 16]. In Maize, a major QTL originally reported for leaf ABA 

concentration (Tuberosa et al., 1998) [53] whereas, later shown to affect root size and 

architecture (Giuliani et al., 2005) [13] and grain yield (Landi et al., 2007) [16]. Following its 

isogenization (Landi et al., 2005) [17]. 
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Biomass accumulation and the maintenance of growth under 

water deficit permits better light interception by leaves, 

leading to increase in photosynthesis side by side increasing 

transpiration by leaves, leading to not only increase in 

photosynthesis but also transpiration rate and soil water 

depletion. Therefore, it is an appropriate strategy for mild 

water deficits. The water deficit along with decline in leaf 

growth rate results in decreased photosynthesis and 

transpiration rate. With a cesation of nocturnal leaf growth 

occurring in a range from -0.8 to -1.6 M Pa (Welcker et al., 

2007) [55], a high degree of genetic variability in sensitivity 

has been observed in maize. QTLs of leaf growth sensitivity 

to water deficit largely overlapped with QTLs for leaf 

responses to evaporative demand were reported in three maize 

mapping populations, (Reymond et al., 2003; Sadok et al., 

2007; Welcker et al., 2007) [38, 46, 53]. Half of the QTLs for silk 

growth overlapped with those for sensitivity of leaf growth 

(Welcker et al., 2007) [55] in one mapping population, which 

suggest that mechanisms favouring expansive growth affect 

multiple organs.  

Water stress at flowering, when pollination, fertilization and 

grain initiation take place, has a stronger negative effect on 

cereal production than at other developmental stages (Saini 

and Westgate 2000) [47]. Maize in particular is highly 

susceptible to water stress at flowering (Claassen and Shaw 

1970; Westgate and Boyer 1985) [8, 56], because it is an open 

pollinating crop, the male and female flowers of which are 

spatially separated on the plant. Extensive research into the 

tolerance of maize to drought stress at flowering identified 

key secondary traits of grain yield, such as the anthesis-to-

silking interval (ASI), improved ear fertility, stay-green and, 

to a lesser extent, leaf rolling (Bruce et al. 2002) [6]. Drought 

stress limits photosynthesis and reduces the flux of assimilates 

to the developing ears (Schussler and Westgate 1995; 

Zinselmeier et al. 1995) [48, 58], slowing down ear and silk 

growth and delaying silk emergence. Since tassel growth is 

less affected by drought than ear growth, the characteristic 

widening of the ASI is observed under waterlimited 

conditions (Heisey and Edmeades 1999) [14]. As a 

consequence of the time lag between pollen release and silk 

emergence, pollination and kernel set are affected. Pollen 

viability and silk receptivity can also be reduced (Saini and 

Westgate 2000) [47]. Conventional selection for grain yield and 

secondary traits considerably improved the tolerance of maize 

to water-limited conditions (Campos et al. 2004; Monneveux 

et al. 2006; Ribaut et al. 2008) [7, 31, 40], but remains a slow and 

challenging task. The growth rate of the silks in maize differs 

between genotypes, resulting in differences in the relative 

timing of female and male flowering, which is negatively 

correlated with yield and increased by water deficit (Duvick, 

2005) [9]. Large genetic gains produced by Phenotypic 

selection under well-managed stress environments for low 

Anthesis-Silking Interval (ASI) (Ribaut et al., 2004) [41]. Five 

QTL alleles for short ASI introgressed through MABC were 

from a drought-tolerant donour to an elite line. When 

compared to unselected control, under severe drought, the 

selected lines has clearly out yielded. However, this 

advantage vanished when stress curtailed yield less than 40% 

and decreased at a lower stress intensity (Ribaut and Ragot, 

2007) [42]. 

 

QTLs for waterlogging tolerance in maize 

Waterlogging which results in oxygen deprivation in the 

rhizosphere, is a serious abiotic stress in plants (Visser et al. 

2003) [54]. Substantial variation exists among maize genotypes 

in response to waterlogging (Zaidi et al. 2004; Liu et al. 

2010) [57, 20]. The degree of stress in waterlogged soils is 

associated with growth stage, duration of flooding, soil type, 

soil acidity/alkalinity, climatic factors, growth conditions and 

genotypes (Rathore and Warsi, 1998) [37]. In a previous study 

(Zaidi et al., 2004) [57], the early stages of maize development 

were shown to be the most sensitive to waterlogging, 

especially from the second leaf stage (V2) to the seventh leaf 

stage (V7), and roots are the first to be affected under 

waterlogged conditions. When the waterlogging treatment 

was continued for 6 d, most roots except for some 

adventitious ones were found to be decomposing, and plants 

were unable to take up the required atmospheric and edaphic 

nutrients, resulting in leaching and denitrification as a result 

of nitrogen deficiency. The latter is observed as a yellowing 

of the older leaves. Nitrogen deficiency itself then further 

increases plant stress. During waterlogging, gas exchange 

between soil and air decreases as gas diffusion in water is 

decreased 104-fold (Armstrong and Drew, 2002) [1], O2 in the 

soil is rapidly depleted, and the soil may become hypoxic or 

anoxic within a few hours (Gambrell and Patrick, 1978; Malik 

et al., 2002) [12, 22]. The anaerobic response of maize has been 

extensively reviewed previously (Sachs, 1993, 1994; Sachs et 

al., 1996; Mustroph and Albrecht, 2003) [44, 45, 43, 32].  

Some recent studies have documented variation in the 

anaerobic response of maize to flooding (Sachs et al., 1996) 
[43] and several morphological responses during waterlogging 

have been also reported (Subbaiah and Sachs, 2003) [50]. 

According to previous studies, the inheritance and expression 

of traits associated with waterlogging tolerance in maize 

seedlings are physiologically and genetically complex (Sachs, 

1993; Liao and Lin, 2001; Subbaiah and Sachs, 2003) [44, 19, 

50]. Complicated responses to waterlogging, such as anaerobic 

proteins synthesis, alterations of gene expression, metabolic 

(switch to a fermentative pathway) and structural changes 

(e.g. aerenchyma formation) have been observed. There 

appears to be inherent genetic variability in maize with regard 

to waterlogging tolerance (Sachs et al., 1996) [43]. However, 

manipulating waterlogging tolerance in maize is still 

hampered by inadequate knowledge of the molecular and 

physiological basis of the process. 

The waterlogging tolerant mechanism in maize comprises of a 

large number of many minor QTLs and only a few major 

QTLs(R2>10% often was adopted as major QTL) (Li et al. 

2012) [18] were associated with waterlogging tolerance for 

example, Qarf7.04-5 (Mano et al. 2005) [24], Qaer 1.06 (Mano 

and Omori 2009) [26], Qaer 1.06-1.07 (Mano et al. 2012) [28] 

and sdw9-1, rdw9-1, tdw9-1, tdw9-2, tdw9-3, sdw9-4 (Qiu et 

al. 2007) [36]. 

Mapping of Quantitative trait loci (QTL) has revealed a 

number of chromosomal regions that affect important traits, 

Such as root and shoot development traits (Qiu et al. 2007) 
[36], Capacity for root arenchyma formation (Mano et al. 2007, 

2012; Mano and Omori 2008, 2009) [27, 28, 25, 26], Adventitious 

root formation (Mano et al. 2009) [26], tolerance to toxins 

under reducing soil conditions and leaf injury.  

In maize, adventitious (nodal) root formation (ARF) at the 

soil surface can provide resistance to soil flooding or 

waterlogging (Bird, 2000) [4]. It has also been reported that 

some maize lines can express ARF during flooding (Lizaso et 

al., 2001) [21]. It has been seen that Z. luxurians and Z. mays 

ssp. huehuetenangenesis exhibit a higher capacity for ARF 

than some maize inbreds and QTLs associated with ARF in 

chromosome 8 and chromosome 4.   
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QTLs for heat tolerance in maize 

Excessive heat in maize perturbs many cellular and 

developmental processes which in turn directly affects grain 

quality and grain production by reducing fertility. (Barnabas 

et al., 2008) [3]. Male gametophyte development seems most 

prone to distribution by heat as well as drought (Mamun et 

al., 2006) [23]. It is not clear if there is any common basis of 

sensitivity of male reproduction to various stresses. In maize, 

QTLs were identified that controlled pollen heat tolerance 

(germinability and pollen tube growth), a factor influencing 

heat-induced sterility (Frova and Sari-Gorla, 1994) [11] maize 

is less prone to heat stress one of the reason might be maize 

originated in tropical regions. In maize drought and heat stress 

often occur simultaneously in the field, which affects crops 

more severely than drought or heat stress alone (Mittler 2006) 
[30]. 
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