

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(5): 1801-1813 © 2018 IJCS Received: 19-07-2018 Accepted: 23-08-2018

Shubha R

Department of Genetics and Plant Breeding, Junagadh Agricultural University, Junagadh, Gujarat, India

Rukam S Tomar

Department of Genetics and Plant Breeding, Junagadh Agricultural University, Junagadh, Gujarat, India

Correspondence Shubha R Department of Genetics and Plant Breeding, Junagadh Agricultural University, Junagadh, Gujarat, India

A high-throughout put sequencing SSR markers development and its validation in three developmental stages of fenugreek (*Trigonella foenum-graecum* L.)

Shubha R and Rukam S Tomar

Abstract

Fenugreek (*Trigonella foenum-graecum* L.) popularly known as "Methi" belongs to family fabaceae and subfamily papilionaceae. Gujarat Methi Variety 2 was selected for transcritome study from the three developmental stages that were vegetative stage (20-30 DAS), reproductive stage (50-60 DAS) and maturity stage (80-90 DAS) which were sequenced using Ion S5 genome sequencing machine. SSR molecular markers were identified individually for each transcript after assembly, by BatchPrimer3 software. A total of 189 primers were developed, out of which 78 from vegetative stage, 64 from reproductive stage and 47 from maturity stage. For validation purpose 30 primers were selected, 10 primers from each developmental stages. The 10 primers for each stage were checked on different stages of cDNA for validation analysis. The primers generated from the vegetative stage were also checked in other two stage of growth. Similarly the primers of reproductive and maturity stages were checked in other two stages of growth. The SSRs containing sequences (Fasta file) which were generated after assembly were also analyzed in NCBI-BLASTn to get the hits for the gene. All the three samples were most related to *Medicago trucatula, Arachis duranensis, Arachis hypogea, Arachis ipaensis, Cicer arisetinum, Cajanus cajan* and *Glycine max*.

Keywords: fenugreek, developmental stages, SSR markers, validation

1. Introduction

Fenugreek (*Trigonella foenum-graecum* L.) popularly known as "Methi" belongs to family fabaceae and subfamily papilionaceae. It is an important spice crop largely grown in the northern India during rabi season. Fenugreek is used as an herb (dried or fresh leaves), spice (seeds), and vegetable (fresh leaves, sprouts, and microgreens). Cuboid-shaped, yellow- to amber-colored fenugreek seeds are frequently encountered in the cuisines of the Indian subcontinent, used both whole and powdered in the preparation of pickles, vegetable dishes, dal, and spice mixes such as panch phoron and sambar powder. They are often roasted to reduce bitterness and enhance flavour (BBC – 2017) ^[1].

Fruit is a curved seed-pod, with ten to twenty flat and hard, yellowish-brown seeds. They are angular- rhomboid, oblong or even cubic, and have a deep furrow dividing them into two unequal lobes. It contains three important chemical constituents with medicinal value; *i.e.*, 1) steroidal sapogenins, 2) galactomannans and 3) isoleucine. These constituents have placed fenugreek among the most commonlyss recognized "nutraceutical" or health food products. It has been reported that fenugreek contains 81 phyconutrients and diosgenin, a steroid saponin found in fenugreek seeds, is the most bioactive component. Diosgenin is often used as a raw precursor for the production of steroidal drugs and hormones such as testosterone, glucocorticoids and progesterone. Studies reveal that a maximum level of diosgenin [(25R)-5-spirosten- 3h-ol] is found to be in young leaves (20mg/g dry weight) and in mature seeds with the percentage range from 0.28% - 0.92%. Reported that steroidal sapogenins were effective agents for the treatment of hypocholesterolemia, a disorder often associated with diabetes (Raju *et al.*, 2004)^[2].

SSR markers (Co-dominant) are widely used for high-throughput genotyping and map construction as they are advantageous due to high abundance, random distribution within the genome and stable co-dominance. The reproducibility, co-dominance, relative abundance and complete genome coverage of SSR markers have made them one of the most useful tools for detecting genetic diversity, genetic linkage mapping, association mapping and evolution analysis. Genomic SSRs and expressed sequence tag (EST)-SSRs, which are considered complementary to plant genome mapping. During this study a few SSRs were developed. However, their use is limited due to relatively low polymorphism and high possibility of no gene-rich regions in the genome. In contrast, genomic SSRs are highly polymorphic and tend to be widely distributed throughout the genome, resulting in more accurate detection of genetic diversity.

In current study, Gujarat Methi Variety 2 was selected for development of SSR molecular markers and validation in the three developmental stages that were vegetative stage (20-30 DAS), reproductive stage (50-60 DAS) and maturity stage (80-90 DAS).

2. Materials and Methods

Present investigation on "A high-throughput sequencing SSR markers development and its validation in three developmental stages of fenugreek (*Trigonella foenum-graecum* L.)" was under taken at the Junagadh Agricultural University (JAU), Junagadh during 2015-16 and 2016-17. Laboratory studies on various aspects were carried out at Biotech Cell, Department of Biotechnology, College of Agriculture, Junagadh. Details of the materials and method followed are described here under.

Sample collection

Fenurgeek seeds of GMV-2 (Gujarat Methi Variety-2) were sown in plot, under the natural environmental condition, for the collection of the samples from three developmental stages *i.e.*, vegetative stage (20-30 DAS), reproductive stage (50-60 DAS) and maturity stage (70-80 DAS) (Figure 3.1). All the tissues were kept in RNA *later* at -20°C till they were used for isolation of RNA.

Extraction of RNA, mRNA and cDNA preparation

RNA was extracted from three developmental stages of fenugreek that were vegetative stage (20-30 DAS), reproductive stage (50-60 DAS) and maturity stage (80-90 DAS) by using trizol RNA isolation protocol method, isolation steps followed under as,

A. Homogenization of Tissues

To obtain high yield of RNA, grinding is a critical point in the extraction of genetic material. So, grinding should be fine as much as possible and temperature should be low as much as possible to avoid degradation. Took 50 mg of sample and grinded it with the help of liquid nitrogen in mortar and pestle that was sterilized and baked, then add 1 ml of Trizol/Tri reagent/Tri extract per 50 - 100 mg of tissue in 2 ml microcentrifuge tube. Sample volume should be less than 100 μ l. Mixed the sample by vigorously shaking by briefly vortexing until the sample is thoroughly resuspended.

B. Phase Separation

In this step, incubated the samples for 5 minutes at room temperature. After that added 0.2 ml of chloroform to each tube and shaked vigorously by hand for 15 seconds, then incubated the samples for 5 minutes at room temperature. After the incubation centrifuge for 15 minutes at 12,000 \times g (RCF) at 4°C or room temperature.

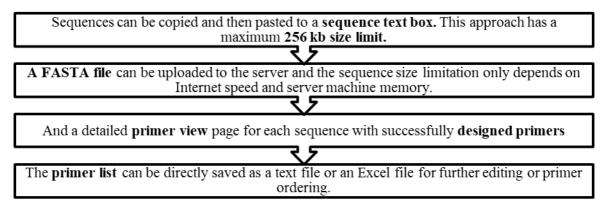
C. RNA Precipitation

Transfered the upper aqueous phase to a fresh tube. Then added 0.5 ml of isopropyl alcohol to precipitate RNA (If this RNA will be used for RT-PCR, first add 50 μ l isopropyl alcohol to precipitate RNA, mixed it and incubate samples at room temperature for 5 min and centrifuge at 12,000 ×g (RCF) for 10 minutes at 4°C or room temperature), Mix it gently, incubate the samples at room temperature for 10 minutes and centrifuge at 12,000 ×g (RCF) for 10 minutes at 4°C or room temperature. The RNA will form a white minute pellet on side or bottom of the tube.

D. RNA Washing

Discard the supernatant gently and wash the pellet with 1 ml of chilled 75% ethanol (Freshly prepared in DEPC water). Mix samples by vortexing for 15 secs, then centrifuge at 12,000 \times g (RCF) for 5 minutes at 4°C or room temperature. Repeat this step twice.

E. Dissolving and storage of RNA


Removed the supernatant gently, then air dry the pellet not more than 5 minutes. Dissolved the pellet in 60 μ l RNase free water (Commercial) or autoclaved DEPC treated water. For the short time storage we can put it in -20° C and for long time storage put it in -80° C.

mRNA isolation and cDNA preparation

In present study fragment library was constructed for Ion S5 sequencing platform size selection and purification of fragmented. The library was constructed using enzymatic fragmentation. The enzymatic time was for 3 min to make a library with average read of 200 bp. and mRNA was purified with Magnetic Oligo (dT) beads in accordance with the manufacturer's instructions by Life technologie's. mRNA was isolated by using Protocol for Dynabeads® mRNA DIRECTTM Micro Kit. cDNA library was constructed using reverse transcription process with reverse transcriptase enzyme.

SSR marker development

SSR marker was designed by using a high through output web tool Batch Primer3 (v 1.0). It is a comprehensive web primer design program using Primer3 core program as a major primer design engine to design different types of PCR primers and sequencing primers in a high-through manner. A batch input of large number of sequences and a tab-delimited result output greatly facilitates rapid primer design, steps are followed under as.

SSR markers validation in fenugreek PCR Protocol

The master mix was prepared in a microfuge tube in which the buffer was added first followed by sterile water, Primer, dNTPs mix followed by Taq DNA polymerase. At the last DNA was added in each tube separately.

Preparation of reaction mixture for SSR

Index	Reagents	Quantity
1	1 PCR buffer (10X)	
2	2 Taq polymerase (3 U.µl ⁻¹)	
3	dNTPs mix (2.5 mM each)	0.06 µl
4 Primer-F (25 pmoles. μ l ⁻¹)		1 µl
5 Primer-R (25 pmoles.µl ⁻¹)		1 µl
6	Template cDNA (50 ng.µl ⁻¹)	1 µl
7	Millipore sterile distilled water	14.74 μl
	Total	20 µl

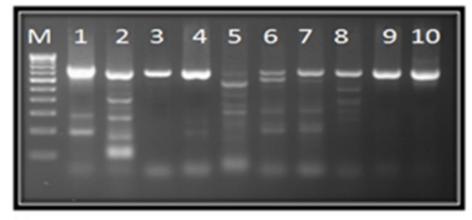
The reagents were mixed gently by tapping against the tube. The tubes were then placed in the Thermal Cycler for amplification. The PCR condition for thermal cycler is given below.

PCR conditions for SSR

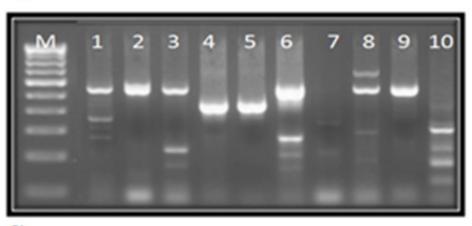
Index	Steps	Temperature (°C)	Duration
1	Initial denaturation	94	4.0 min
2	Denaturation	94	45 sec
3	Annealing	52	30 sec
4	Extension	72	45 sec
	Repeat the step	s 2 to 4 for 40 times	
5	Final extension	72	10 min
6	Hold	4	

Agarose gel electrophoresis of amplified product

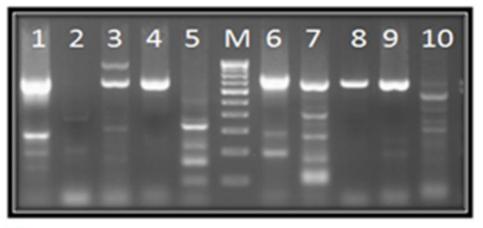
PCR products were subjected to electrophoresis with marker DNA of known molecular weight in 2.2% agarose gel. After electrophoresis, the gel was carefully taken out of the casting tray and photographed in Gene Sys gel documentation system.


3. Results and Discussion

Total RNA isolated was 10; 15 and $2\mu g/ml$, followed by


mRNA isolation was 6.1; 7.63 and 1.52µg/ml and construction of cDNA library 25.4; 38.7 and 5.35µg/ml amplification of cDNA library, from all the three developmental stages of fenugreek GMV-2 that were vegetative stage (20-30 DAS), reproductive stage (50-60 DAS) and maturity stage (70-80 DAS) respectively. SSR marker was designed by using a high through output web tool Batch Primer3 (v1.0). BatchPrimer3 is a comprehensive web primer design program using Batchprimer3 core program as a major primer design engine to design different types of PCR primers and sequencing primers in a high-through manner. In this study, a total 100 contigs were mined for SSR marker identification in each stages that are vegetative, reproductive and maturity stages. Among this 10 markers from each stages were used for validation purpose by using polymerase chain reaction.

For the identification of SSRs FASTA files of 100 contigs from vegetative stage, 100 contigs from reproductive stage and 100 contigs from maturity stage were used. Total 78 primers were developed from vegetative stage (Table 1). Of fenugreek these developed primers met the following parameters: primer size from 18-27 bp (optimal 20bp), GC content 33%-55% (optimal 45% and 55%) and the annealing temperature was set at 58°C- 60°C (optimal 59°C). In reproductive stage 64 primers were developed with the parameters of primer size was 20-22 bp (optimal 20bp), GC content 40%-60% (optimal 45% and 50%) and the annealing temperature was 59°C-60°C) (Table 2). 47 primers were developed from maturity stage of fenugreek with the primer size of 20-27bp (optimal 20), GC content 33%-60% (optimal 50%) and the annealing temperature was 58°C-60°C (optimal 59°C) (Table 3).


Total 30 primers were selected for validation purpose 10 primers each from each developmental stage that are vegetative stage, reproductive and maturity stage (Figure 1) with the basic primer parameters: primer size 20bp, GC content 45%-60% (optimal 50% and 55%) and the annealing temperature 59°C-60°C. During the SSR marker identification and primer designing some information was generated that is summarized here, Tm and GC % was found between 59°C-60°C and 45%-60% respectively and length of SSR primers was between 20-23 bp.

(2)

(b)

(c)

Fig 1: SSR markers screening images (a) vegetative stage, (b) reproductive stage and (c) maturity stage

Index	Location or Gene ID	0	PL	Temp(°C)	GC(%)	Primer sequence
1	Vegetative (single) trimmed config 6	F	20	59.96	55	CTGGTCCAACCACTGGATCT
1		R	20	60.08	55	GTGGAGGAGGATGACAGCAT
2	Vegetative_(single)_trimmed_contig_7	F	20	59.80	45	TCATCACAAAATGGCTCTCG
2	vegetative_(single)_trimmed_contig_/	R	20	59.74	55	ATCACAGTGCCTGTCTGGTG
3	Vegetative_(single)_trimmed_contig_8	F	20	60.47	50	TCCAGAAATGAGCCTTCTCG
3	vegetative_(single)_trinined_contig_8	R	20	59.87	45	AATAGCATCTTTGCGCCTGT
4	Vegetative_(single)_trimmed_contig_9	F	20	59.99	50	TTGCTGACCATCTTGCTGAC
4	vegetative_(single)_trinined_contig_9	R	20	59.94	45	TCCAACTGTTCATCCAACCA
5	5 Vegetative_(single)_trimmed_contig_10	F	20	59.87	50	AAGTTGGAGCTGGATGCTGT
5		R	18	60.14	50	TGGAAATGTTGGGGTTGG
6	Vegetative_(single)_trimmed_contig_11	F	20	59.41	40	TTTGTTCCGGAGGAAAATGT
0		R	22	59.39	31.82	TTTCCATCATCATTTTCCAAGA
7	Vegetative (single) trimmed contig 12	F	21	59.57	47.62	TCTTGGGGAAGTAGGAAAAGG
/	Vegetative_(single)_trimmed_contig_12	R	20	58.90	40	TCCCCTTTGATGAATGAACA

		F 21	59.18	47.62	TCTCCTCCAAAGTACGGATTG
8	Vegetative_(single)_trimmed_contig_13	Г 21 R 20	<u>59.18</u> 59.75	55	TCTTCCTCTTCCTCCTTCC
9	Vegetative_(single)_trimmed_contig_14	F 20	60.19	50	AGGGGTAAAGATGGCAAACC
,	vegetaarve_(single)_arinined_contag_14	R 20	60.08	45	GTTCTGCAAAATGCCTCCAT
10	Vegetative_(single)_trimmed_contig_15	F 21 R 20	58.76 61.08	42.86 55	TGTTTGAGACCTTCAATGTGC CTGGTGGAGCCACAACCTTA
		F 20	60.11	50	CATCAGTGGATTGGTTGCAG
11	Vegetative_(single)_trimmed_contig_16	R 20	59.80	45	CATCATGACGAAGCTTGGAA
12	Vegetative_(single)_trimmed_contig_17	F 21	60.21	38.10	TAACCGGAAACATTGGTTTGA
12	vegetative_(single)_trinined_contig_1/	R 20	59.79	45	CCACCAATTCTCGGTTCAAT
13	Vegetative_(single)_trimmed_contig_18	F 20	60.00	55	GCAACAAGGTCTGCTCCTTC
		R 20	59.82	55 50	GGGACCTTCACCTGTGACAT
14	Vegetative_(single)_trimmed_contig_19	F 20 R 20	59.65 60.68	50	TCCTTCCACCGCATCTCTAT GCTGCCACTTCAAACAAACC
		F 20	59.28	50	CAGATGACCCAGAGGCTTTT
15	Vegetative_(single)_trimmed_contig_20	R 20	57.39	45	AGCCCCACATTTATTGTGTC
16	Vegetative_(single)_trimmed_contig_21	F 20	59.96	45	TGTCATGCATTAGGCCATGT
10	vegetuuve_(single)_uninned_conug_21	R 20	60.15	45	TATGCTGCTTTTGCTTGTCG
17	Vegetative_(single)_trimmed_contig_22	F 20 R 21	59.18 59.98	50 42.86	GATAAGCGGAGAACCCGTAA
		F 20	60.08	42.80 50	TGAATTTTGGGCAACACTAGG TTGGACTCAAACAGGGGAAG
18	Vegetative_(single)_trimmed_contig_24	R 20	59.66	50	TAGCCTCACCTCGGGAAATA
10	Warsteting (simple) triumed as the 20	F 20	59.99	55	CTCCGTCTTCGTGGTGGTAT
19	Vegetative_(single)_trimmed_contig_29	R 20	60.00	55	CACAAGGTGAAGGGTGGACT
20	Vegetative_(single)_trimmed_contig_31	F 20	60.62	50	GAGCCGATTTGTGCGATTAC
	(ongound of (ongo) furning of counter of	R 21	57.49	33.33	TTGGCATATTTCATCACAACA
21	Vegetative_(single)_trimmed_contig_32	F 20 R 20	59.83 60.24	50 45	GAACCGGGACATTGACTGTT TGTTGCCACCTTCATCTTGA
		F 20	59.74	50	CAAGTTCCCTGGGGATGATA
22	Vegetative_(single)_trimmed_contig_33	R 20	60.19	55	CACTTTCGACACCACACCTG
23	Vagatativa (single) trimmed contig 27	F 20	60.24	55	GGACGTGGACCTTCTTCTGA
25	Vegetative_(single)_trimmed_contig_37	R 20	60.03	45	TCGAGATTTGCCCCTAATTG
24	Vegetative_(single)_trimmed_contig_38	F 20	60.03	50	GGCTCAACAACTGACAAGCA
		R 20 F 20	59.18 59.94	50 40	TCTGGACTGTTCCTCATCCA GCATTTGCCAAGGATGTTTT
25	Vegetative_(single)_trimmed_contig_40	R 20	59.94	55	GTACAAAGGGCAGGGACGTA
26		F 20	60.15	50	CAATGGTGGTGCTGAAACTG
26	Vegetative_(single)_trimmed_contig_41	R 20	61.10	50	GGTGAATCGCTTGATTCGTT
27	Vegetative_(single)_trimmed_contig_42	F 20	60.08	45	TGCAAGAAGCAAGATGGCTA
		R 20	59.58	45	TTCAGAATGACCAGCACTCG
28	Vegetative_(single)_trimmed_contig_43	F 20 R 20	59.71 59.98	45 50	TCAGGGAGGAGAAATCCTGA GTTAGCATGGCCAGGTTGTT
		F 20	59.73	50	AATCCATCCTCGGAATCCTT
29	Vegetative_(single)_trimmed_contig_44	R 20	60.00	50	TTTTTAACACATCAAGCTATGCAG
30	Vegetative_(single)_trimmed_contig_45	F 20	59.73	45	CTCAGACGCAGATTCCAACA
50	vegetaarve_(single)_arininea_contag_43	R 24	58.58	33	ACGAACATGTTTCAGCCACA
31	Vegetative_(single)_trimmed_contig_46	F 20 R 20	59.98 60.16	50 45	GTCAAGGCAGCTGCTACTCC GTTGACAGGGTCAGCCAAAT
		F 20	60.16	60	CTTCAACCGATGGACCTTTG
32	Vegetative_(single)_trimmed_contig_47	R 20	59.97	50	GCAGCAAAATTGTGCATAACA
33	Vegetative_(single)_trimmed_contig_48	F 20	60.49	50	GGCTCATCTCAGTCGGAGTC
33	vegetauve_(single)_trimmed_contig_48	R 21	59.76	38	AAAGGTCCCTGCCTTGAAAT
34	Vegetative_(single)_trimmed_contig_49	F 20	59.95	60	TGGAGCTTAGGACCAGTTTCA
		R 20 F 21	59.94 59.86	45 47.62	GCATGAGAAGACCCACCAAC TGGAGCTTAGGACCAGTTTCA
35	Vegetative_(single)_trimmed_contig_50	F 21 R 20	<u>59.86</u> 60.52	47.62	GCATGAGAAGACCCACCAAC
25		F 20	60.25	45	CCAGCTTTGTGCAGGAAAAT
36	Vegetative_(single)_trimmed_contig_51	R 26	59.84	26.92	TCCAAGATTTTAACAAACATTTGAA
37	Vegetative_(single)_trimmed_contig_53	F 25	59.52	32	TGGATTCTTATCCATAAACCAATTC
		R 22	59.27	40.91	AAGAGCAGAATCAGCAGAACAA
38	Vegetative_(single)_trimmed_contig_54	F 25 R 27	57.03 59.06	28 33.33	TGAATTGAAGACTACATTGGATAAA CAACTAGTACTATAATTGCCCATTCAA
		F 20	58.75	55.55	TGGAGAAGATCTGGCATCAC
39	Vegetative_(single)_trimmed_contig_55	R 20	59.81	50	AGCAATACCAGGGAACATGG
40	Vagatativa (single) trimmed contin 50	F 20	60.15	50	TCAACCACTACGACCGAACA
40	Vegetative_(single)_trimmed_contig_56	R 20	59.93	50	GGTGGTTATGGCAAAGAGGA
41	Vegetative_(single)_trimmed_contig_57	F 20	59.85	45	TTTGGAAGCACATGCTGAAC
		R 20	59.96	45	CGCGTTAGAATCCCAACAAT
42	Vegetative_(single)_trimmed_contig_59	F 21	59.86	52.38	GGTCGTGATGAGAGTTCTTCG

		D 25	50.96	20	
		R 25 F 20	59.86 60.07	28 55	AAACTTGAAAACTTTTGGACCTTTT
43	Vegetative_(single)_trimmed_contig_60	R 20	60.07	50	CAGAGCTTGCAGCTTCACTG CCACCCTATTGGCATCAAAC
		F 20	59.95	50	CCTTCGATCCTTTTGCTGAG
44	Vegetative_(single)_trimmed_contig_61	R 23	58.78	39.13	CTTGCAGTAATCATTCAATCCAG
		F 20	60.12	40	ACATGTTTCATTGGCAAGCA
45	Vegetative_(single)_trimmed_contig_62	R 24	59.39	29.17	TTTGTTTAAAAGCACCAAAAGAGA
		F 20	60.21	50	CAAAACCACTCCCACCAATC
46	Vegetative_(single)_trimmed_contig_63	R 20	60.84	50	GCTGCTGCAATGGTACATGA
		F 20	59.43	55	GAGACGGGAACAGAAGGCTA
47	Vegetative_(single)_trimmed_contig_65	R 21	59.38	47.62	TGCTCTATGCAACACACACCT
		F 20	60.12	50	GGTCAAAGTCGCTTCACCAT
48	Vegetative_(single)_trimmed_contig_67	R 20	60.26	55	CGGGGACGAAGTTAGTAGCA
		F 20	60.44	35	TTTTTCCATGGCTTGCATTT
49	Vegetative_(single)_trimmed_contig_68	R 20	58.95	40	TTTTCCTGTTCATCCAACCA
		F 20	59.84	45	GGATTTGTTGTTGGGCTTGT
2050	Vegetative_(single)_trimmed_contig_69	R 20	59.98	55	CCTTCACAGCTTCTCCTTGG
		F 20	60.06	55	GGGATGACCGTATTGGTGTC
51	Vegetative_(single)_trimmed_contig_70	R 20	60.07	50	ATGGGCTTGAGTTGATCAGG
		F 20	60.25	55	AACGACCTCGTTCTCCTCCT
52	Vegetative_(single)_trimmed_contig_74	R 20	60.06	50	CATCTGCCAATATGGCTCCT
50		F 20	59.97	55	CTAGGCTTGGCTTGATGGAG
53	Vegetative_(single)_trimmed_contig_75	R 20	59.87	50	ATTCACACTGCTGGGAGCTT
5 4		F 20	60.37	55	CCACGTGGAAGATAGGGTTG
54	Vegetative_(single)_trimmed_contig_76	R 23	59.22	43.48	AAGCAGTGAGTTCTTCTTCCT
		F 20	59.84	45	GCTTATGAATGTGGCAAGCA
55	Vegetative_(single)_trimmed_contig_77	R 20	59.72	50	TGGTATGCGAACTTGTCTGG
5.4		F 20	59.96	45	AAGAACGCTTCGAAGATGGA
56	Vegetative_(single)_trimmed_contig_78	R 20	60.07	50	ATCCCAGTCCTCAGGCTTTT
57		F 20	60.01	55	AGCGAGTCGAGGTGGTAGAA
57	Vegetative_(single)_trimmed_contig_79	R 20	59.72	60	CCCAGCTACTCTTGGTCCAC
59		F 20	59.90	45	CCCAAATCCAGAACCTTCAA
58	Vegetative_(single)_trimmed_contig_80	R 20	59.81	45	TGACCATCAACGGTGACAAT
50		F 20	60.88	50	AAACCAGCCTGGCATTAGGT
59	Vegetative_(single)_trimmed_contig_81	R 20	60.09	55	GAAGAGAAGTGGTGGGTGGA
60	Vegetative_(single)_trimmed_contig_82	F 20	59.60	50	CTTTTTGTGGGTAGCCCTTG
60	vegetative_(single)_trimmed_contig_82	R 20	60.59	40	TTCCGAAAGATTGCGTTCAT
61	Vagatativa (single) trimmed contig 84	F 20	60.02	50	AGCCGACAGAGAAGCAATGT
61	Vegetative_(single)_trimmed_contig_84	R 20	59.97	50	GGTGGCAGACATGAATTGTG
62	Vagatativa (single) trimmed contig 85	F 20	60.36	55	CACTCCACTCCAAACCCATC
62	Vegetative_(single)_trimmed_contig_85	R 20	59.99	45	CCAAATCAAGTTGAGCAGCA
63	Vegetative_(single)_trimmed_contig_88	F 20	59.85	50	CCAAAAGCGACAAAGACCTC
03	vegetative_(single)_trinined_contig_88	R 20	59.92	45	ATGGATTCATTCGCCGTTAG
64	Vegetative_(single)_trimmed_contig_89	F 20	60.24	40	TGGATTTGGAAGGATTGGAA
04	vegetative_(single)_trinined_contig_89	R 20	59.86	40	AAACATTTGGTGTTGGCACA
65	Vegetative_(single)_trimmed_contig_90	F 23	57.35	30.43	TTCAGATGATTTTCATTCTGTCA
05	vegetative_(single)_trinined_contig_90	R 23	58.80	39.13	CATTGACACCAACCACATAAGTT
66	Vegetative_(single)_trimmed_contig_92	F 20	60.12	55	CAGATCATCACGACGACCAC
00	, egema ve_(single)_uminicu_conug_92	R 20	59.60	55	GAACTCAGCCAGTGCCTTCT
67	Vegetative_(single)_trimmed_contig_93	F 20	60.22	55	GGAGCTCGGGACTGTAATGA
07	, egemare_(single)_uminicu_conug_95	R 21	60.02	42	TCACCCACATGTAAAAGCACA
68	Vegetative_(single)_trimmed_contig_94	F 20	59.14	50	GCTCCAGGTGACTTTGGATT
	- Securite_(single)_uninited_contrag_)4	R 21	60.15	47.62	CCGATAACATGCTGTCGACTT
69	Vegetative_(single)_trimmed_contig_95	F 20	61.51	55	GACCATCCTCTCCTCCGAAA
	6	R 23	59.76	39.13	CATGGCATTTCTGGTTAATAAGG
70	Vegetative_(single)_trimmed_contig_96	F 20	59.81	50	CATTCCCTTCGTTCTTCAGC
-	<u> </u>	R 20	60.36	45	GATGCCTTGCAAGCTCAAAT
71	Vegetative_(single)_trimmed_contig_97	F 20	59.53	50	CCCATAACAGGTCCCACATT
		R 24	59.49	41.67	AACTTGTGTACAGACCAGGATTTG
72	Vegetative_(single)_trimmed_contig_100	F 20	60.29	50	AAGAAGCCACACCGTTTCAG
		R 22	58.97	40.91	TTCAAATAGAGTCCCTTGCTCA
73	Vegetative_(single)_trimmed_contig_110	F 20	60.23	50	GCAGCCACTTCATCCTTCAT
-		R 20	59.85	45	TCAGCCAATTGAAGTGTTGC
74	Vegetative_(single)_trimmed_contig_111	F 20	60.24	40	ACCAAATCCAAATCCCATT
	0	R 20	59.80	60	GATCGACCGGTCTCTCTGTC
75	Vegetative_(single)_trimmed_contig_112	F 20	59.68	50	TGGACCTGTCAATGTCAAGC
-		R 20	60.14	50	GTAGCAACGCCAAATCCTGT
,		10/0/0	61.00	55	GAACGGTCTCGGAAAACTCC
76	Vegetative_(single)_trimmed_contig_113	F 20 R 20	59.26	40	TCCCAAATTGTCCAACCTTT

77	Vagatativa (single) trimmed contig 114	F 20	59.74	45	GTTACGCCAATGCAGTTCAA
//	77 Vegetative_(single)_trimmed_contig_114	R 20	59.99	50	TGCACACTCCATTCTTGCTC
78	Vagatativa (single) trimmed contig 115	F 20	60.12	45	ATTCGCCAAACGTGAGAAAC
78	78 Vegetative_(single)_trimmed_contig_115	R 20	60.30	55	CACCAGAAGTGCAGGAGGTT

* O: Orientation, PL: Primer length, Temp: Temperature

Table 2: List of SSR markers developed by using BatchPrimer3 web tool from reproductive stage	ge
---	----

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GC (%) 45 55 35 50 55 36.36 50 55 50 55 36.36 50 55 50 55 50 45 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 55 55	Primer sequenceTCAAACAATATGGCCACAGCAGGAGGTACCAATCCCCAACTATTGCAATTCGCAATCCCCAACTATTGCAATTCGCAATCCCCAACCAGTCGAAACGTAGCCATCACAGCTCATGCTGTTGATGCTGCCGCTCTATCAAGTTCAGGTGAGAAGGAAAGCAAATTGTGAAGGCTGAAGCTCAGTTGCATGGTCAAAGTCGCTTCACCATCGGGGACGAAGTTAGTAGCAGATCTGGTGGACCGAGTTTTGGCTGGCCAAACTTATTCATCATCCAATGGAGAGAGGGGGTGCCGGCCAAACTTATTCATTCACATGCCATCTTCACCATAGGCTCCTTTTAAGCCCATCGCCACTTGCACTTCTCATCACATCCAGCATCTTCACATCACATCAGCATCTCCGTCAAGACATCAGCATCTCCGTCAAGACTGGAGCCATTTATCCCAAT
1 Reproductive_(single)_trimmed_contig_6 R 20 60.05 2 Reproductive_(single)_trimmed_contig_7 F 20 60.07 3 Reproductive_(single)_trimmed_contig_8 F 20 59.86 3 Reproductive_(single)_trimmed_contig_8 F 20 59.98 4 Reproductive_(single)_trimmed_contig_10 F 20 59.86 5 Reproductive_(single)_trimmed_contig_11 F 20 60.16 5 Reproductive_(single)_trimmed_contig_11 F 20 60.26 6 Reproductive_(single)_trimmed_contig_12 F 20 58.99 7 Reproductive_(single)_trimmed_contig_13 F 20 60.60 7 Reproductive_(single)_trimmed_contig_14 F 20 59.93 8 Reproductive_(single)_trimmed_contig_15 F 20 59.99 9 Reproductive_(single)_trimmed_contig_16 F 20 59.94 1 Reproductive_(single)_trimmed_contig_16 F 20 58.86 <tr< td=""><td>$\begin{array}{c} 55\\ 35\\ 50\\ 50\\ 55\\ 36.36\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 55\\ 50\\ 50$</td><td>AGGAGGTACCAATCCCCAAC TATTGCAATTCGCAAAACCA CAGTCGAAACGTAGCCATCA CAGCTCATGCTGTTGATGCT GCCGCTCTATCAAGTTCAGG TGAGAAGGAAAGCAAATTGTGA AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT</td></tr<>	$\begin{array}{c} 55\\ 35\\ 50\\ 50\\ 55\\ 36.36\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 55\\ 50\\ 50$	AGGAGGTACCAATCCCCAAC TATTGCAATTCGCAAAACCA CAGTCGAAACGTAGCCATCA CAGCTCATGCTGTTGATGCT GCCGCTCTATCAAGTTCAGG TGAGAAGGAAAGCAAATTGTGA AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} 35\\ 50\\ 50\\ 55\\ 36.36\\ 50\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 55\\ 50\\ 55\\ 50\\ 55\\ 55$	TATTGCAATTCGCAAAACCA CAGTCGAAACGTAGCCATCA CAGCTCATGCTGTTGATGCT GCCGCTCTATCAAGTTCAGG TGAGAAGGAAAGCAAATTGTGA AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 50\\ 50\\ 55\\ 36.36\\ 50\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 50\\ 45\\ 50\\ 50\\ 55\\ 50\\ 55\\ 55\\ 55\\ 55\\ 55\\ 5$	CAGTCGAAACGTAGCCATCA CAGCTCATGCTGTTGATGCT GCCGCTCTATCAAGTTCAGG TGAGAAGGAAAGCAAATTGTGA AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 50\\ 55\\ 36.36\\ 50\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 50\\ 45\\ 50\\ 50\\ 55\\ 50\\ 55\\ 55\\ 50\\ 55\\ 55\\ 5$	CAGCTCATGCTGTTGATGCT GCCGCTCTATCAAGTTCAGG TGAGAAGGAAAGCAAATTGTGA AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
5 Reproductive_(single)_trimmed_contig_8 R 20 59.98 4 Reproductive_(single)_trimmed_contig_10 F 20 59.86 5 Reproductive_(single)_trimmed_contig_11 F 20 60.16 6 Reproductive_(single)_trimmed_contig_12 F 20 58.99 7 Reproductive_(single)_trimmed_contig_13 F 20 59.93 7 Reproductive_(single)_trimmed_contig_13 F 20 59.91 8 Reproductive_(single)_trimmed_contig_14 F 20 59.93 9 Reproductive_(single)_trimmed_contig_15 F 20 59.99 9 Reproductive_(single)_trimmed_contig_15 F 20 59.99 1 Reproductive_(single)_trimmed_contig_16 F 20 59.94 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36 20 60.36 R 20 61.14	$\begin{array}{c} 55\\ 36.36\\ 50\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 50\\ 45\\ 50\\ 55\\ 50\\ 55\\ 50\\ 55\\ 55\\ 55\\ 55\\ 5$	GCCGCTCTATCAAGTTCAGG TGAGAAGGAAAGCAAATTGTGA AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 36.36\\ 50\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 45\\ 50\\ 50\\ 55\\ 50\\ 55\\ 50\\ 55\\ 55\\ 55\\ 5$	TGAGAAGGAAAGCAAATTGTGA AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 50\\ 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 45\\ 50\\ 55\\ 50\\ 55\\ \end{array}$	AGGCTGAAGCTCAGTTGCAT GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 50\\ 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 45\\ 50\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 50\\ 55\\ 55$	GGTCAAAGTCGCTTCACCAT CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 55\\ 50\\ 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 45\\ 50\\ 45\\ 50\\ 55\\ \end{array}$	CGGGGACGAAGTTAGTAGCA GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$50 \\ 45 \\ 50 \\ 47.37 \\ 45 \\ 50 \\ 50 \\ 50 \\ 45 \\ 50 \\ 55 \\ 55 \\ 55 \\ 55 \\ 50 \\ 55 \\ 55$	GATCTGGTGGACCGAGTTTT GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
6 Reproductive_(single)_trimmed_contig_12 R 20 59.05 7 Reproductive_(single)_trimmed_contig_13 F 20 60.60 8 Reproductive_(single)_trimmed_contig_14 F 20 59.91 8 Reproductive_(single)_trimmed_contig_14 F 20 59.93 9 Reproductive_(single)_trimmed_contig_15 F 20 59.99 1 Reproductive_(single)_trimmed_contig_16 F 20 58.86 1 Reproductive_(single)_trimmed_contig_16 F 20 58.86 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36	$\begin{array}{r} 45\\ 50\\ 47.37\\ 45\\ 50\\ 50\\ 50\\ 45\\ 50\\ 45\\ 50\\ 55\\ \end{array}$	GGCTGGCCAAACTTATTCAT CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
Reproductive_(single)_trimmed_contig_13 F 20 60.60 7 Reproductive_(single)_trimmed_contig_13 F 20 60.60 8 Reproductive_(single)_trimmed_contig_14 F 20 59.93 9 Reproductive_(single)_trimmed_contig_15 F 20 59.99 1 Reproductive_(single)_trimmed_contig_16 F 20 59.94 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36	$50 \\ 47.37 \\ 45 \\ 50 \\ 50 \\ 50 \\ 45 \\ 50 \\ 45 \\ 50 \\ 55 \\ 55$	CATCCAATGGAGATGGTGGT GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
7 Reproductive_(single)_trimmed_contig_13 R 20 59.91 8 Reproductive_(single)_trimmed_contig_14 F 20 59.93 9 Reproductive_(single)_trimmed_contig_15 F 20 59.99 1 Reproductive_(single)_trimmed_contig_16 F 20 58.86 1 Reproductive_(single)_trimmed_contig_16 F 20 58.86 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36	47.37 45 50 50 50 45 50 55	GCCGGCCAAACTTATTCAT TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
Reproductive_(single)_trimmed_contig_14 F 20 59.91 8 Reproductive_(single)_trimmed_contig_14 F 20 59.93 9 Reproductive_(single)_trimmed_contig_15 F 20 59.99 1 Reproductive_(single)_trimmed_contig_16 F 20 59.94 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36	45 50 50 45 50 55	TCACATGCCATCTTCACCAT AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50 50 50 45 50 55	AGGCTCCTTTTAAGCCCATC GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
9 Reproductive_(single)_trimmed_contig_15 F 20 59.99 1 Reproductive_(single)_trimmed_contig_16 F 20 58.86 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36 2 Reproductive_(single)_trimmed_contig_20 F 20 60.36	50 50 45 50 55	GCCACTTGCACTTCTCATCA CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	50 45 50 55	CATCAGCATCTCCGTCAAGA CTGGAGCCATTTATCCCAAT
Image: Non-Section of the section of the se	45 50 55	CTGGAGCCATTTATCCCAAT
$\begin{array}{ c c c c c c }\hline 1 & Reproductive_(single)_trimmed_contig_16 & R & 20 & 61.14 \\ \hline 2 & Reproductive_(single)_trimmed_contig_20 & F & 20 & 60.36 \\ \hline R & 20 & 60.34 \\ \hline \end{array}$	50 55	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55	
2 Reproductive_(single)_trimmed_contig_20 R 20 60.34		GCCATCTCGCTATCCAACAA
K 20 60.34		GCTGAGGATCCGAACGAGTA
		GGGTGGTAGCATCCATCTTG
3 Reproductive_(single)_trimmed_contig_22 F 26 59.48	30.77	AAAATGAAGGTGAGTTATGAGAATGA
R 20 59.01	50	TGCACTTTGGAGTTCTCAGG
4 Reproductive_(single)_trimmed_contig_23 F 20 59.68	40	AATTTTAGGGGACGGCATTT
R 20 59.95	55	GCTCTGAGAATCCCTCAACG
5 Reproductive_(single)_trimmed_contig_25 F 20 59.80	45	CAAGAAGCAATCGGATGTGA
R 20 59.10	50	AGGCAAAAACACAGGTAGGG
6 Reproductive_(single)_trimmed_contig_26 F 20 60.02	50	AGATTCATGCAGCGTGTGAG
R 22 59.66	50	GGCAAAGACACACACAGATAGG
7 Reproductive_(single)_trimmed_contig_27 F 20 60.04	50	TGAGGATTCCCAGAACAAGG
R 20 59.84	45	CGAAAGTGTTTGGCTCATCA
8 Reproductive_(single)_trimmed_contig_28 F 20 59.98	45	TTGGTCAGTTTGGTGTTGGA
K 20 60.02	50	AGCTCTTCGCAGTTGTCCAT
9 Reproductive_(single)_trimmed_contig_29 F 20 60.44	50	GGAGCCAATTATGCATCTGG
K 20 00.11	50	CTCAGTTGGGTGGAAAGCAT
10 Reproductive_(single)_trimmed_contig_30 $\frac{F 20}{D 20} \frac{60.07}{c0.20}$	50	ACGATTCCCTTGATGAGACG
R 20 60.39	55	CAAGAGGAGGCAACGTAGGA
11 Reproductive_(single)_trimmed_contig_31 $\begin{bmatrix} F & 20 & 59.84 \\ F & 20 & c0.02 \end{bmatrix}$	45	GAATAGCAATCGTCGTGCAA
R 20 60.03	45	AGAAAGCCGGAAGGGAATTA
12 Reproductive_(single)_trimmed_contig_32 F 20 59.97	40	AAAGCGTTTTGGGAACATTG
R 20 59.84	55	GCCACTAATCGCTCCTCAAC
13 Reproductive_(single)_trimmed_contig_34 F 20 60.03	40	ACCCAACCCATTTCATTTCA
R 21 59.79	47.62	GAATGCTGAATAACCCCTTCC
14 Reproductive_(single)_trimmed_contig_35 F 20 60.02	55	GCAAGCCAGTCAAGCTAACC
R 20 59.87	50	AGCAAGATGGTCAGCAAGGT
15 Reproductive_(single)_trimmed_contig_36 F 20 59.96	50	ACAGGGCAATCGACCATAAG
R 20 59.80	45	AATGCAACAAACCCAGATCC
16 Reproductive_(single)_trimmed_contig_37 F 20 59.87	50	ACGAGTTTGCAGACCGAGAT
R 21 59.43	42.86	TTTGAGAGTGATGGTGCTGAA
17 Reproductive_(single)_trimmed_contig_38 F 21 59.19	38.10	TTCTGTTTTTCCCAAGAATGC
K 20 60.47	45	AAACCCATGAATGCAGGCTA
18 Reproductive_(single)_trimmed_contig_39 F 20 59.79	45	GCCTGCATTCATGGGTTTAT
K 20 59.07	45	TAACATTTCAGCTGCCTTGC
19 Reproductive_(single)_trimmed_contig_40 $\frac{F 20}{P 20} \frac{59.34}{c0.28}$	50	CACAAGAAGTTCCACGTTGC
R 20 60.28	40	CATGAATGCCATTTCCATCA
20 Reproductive_(single)_trimmed_contig_42 F 20 59.93	50	CGGACCTCAAGTTTGGAATC
R 20 39.97	50	AGTTGTGTTGATGCCCTTCC
21 Reproductive_(single)_trimmed_contig_43 F 20 60.13	40	TTTTTGCTGGTGTTGGTTCA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	GCAAGAGGAGCATGTTCAGA

22	Reproductive_(single)_trimmed_contig_45	F 22 R 21	58.82 59.21	40.91 42.86	GGTTGATGTGTTGTTGGATTCT CCCACTCTCAATAAAGGCAAA
		F 20	60.15	42.80 50	GGTGGGCATTTAGGGAGATT
23	Reproductive_(single)_trimmed_contig_51	R 20	60.44	50	AAATCGAGTGGGGCTAAAGG
24	Reproductive_(single)_trimmed_contig_52	F 20	59.82	45	GGTTGCAATTATGTGCATGG
24	Reproductive_(single)_trimined_contig_52	R 20	59.36	50	TTAGGATCCGGGATGTCTGT
25	Reproductive_(single)_trimmed_contig_55	F 20	58.91	50	CATGGCAGAGGAGAATCAGA
	<u>-</u>	R 20	60.01	45	ACAAAGCCCCAAAACAACAG
26	Reproductive_(single)_trimmed_contig_56	F 20 R 20	60.21	45	TTGAAACCTGGAATGGTGGT GCGCAGACTTCAAACCAAAT
		F 20	60.26 59.87	45 50	CCAACTGGACTGCAAACTGA
27	Reproductive_(single)_trimmed_contig_57	R 20	59.94	50	GAACCCAGTTCTGGGAACAA
		F 20	59.97	55	TTCTCCTCCACCGTAACACC
28	Reproductive_(single)_trimmed_contig_59	R 20	60.39	45	GCATGCAACTTTTTCCTGCT
29	Reproductive_(single)_trimmed_contig_61	F 20	60.05	45	TGGTCATTTCCAAAGGAAGC
29	Reproductive_(single)_trimined_contig_of	R 20	59.92	50	GAACACCCCCAGGGTAAAAT
30	Reproductive_(single)_trimmed_contig_62	F 20	59.75	55	ACCGAGACAGCTGAGAAAGC
	· · · · · · · · · · · · · · · · · · ·	R 20	60.25	55	CTTCCCTGTGCCCTTGTCTA
31	Reproductive_(single)_trimmed_contig_63	F 20 R 21	59.85 59.68	55 47.62	GCGTCAACCCTTTCACTCTC TCAGACGGGGGATAATAGCTGA
		F 20	60.86	55	TGTCGAAGAGAGGGTCGTGGT
32	Reproductive_(single)_trimmed_contig_65	R 18	60.06	61.11	CGTACCATGGGCTTCCTG
22		F 20	59.96	45	TGTCATGCATTAGGCCATGT
33	Reproductive_(single)_trimmed_contig_66	R 20	60.15	45	TATGCTGCTTTTGCTTGTCG
34	Reproductive_(single)_trimmed_contig_67	F 20	60.17	45	ACCCCCACAAAGATGATGAA
54	Kepfoddeuve_(single)_ufinitied_contig_0/	R 20	60.08	45	CATGTGCCATCAATTCAAGC
35	Reproductive_(single)_trimmed_contig_68	F 20	59.75	55	ACGCACTCTCTTTCCTCTCG
	· · · · · · · · · · · · · · · · · · ·	R 20	59.06	50	TGAAATCCTCCTCCACTTCC
36	Reproductive_(single)_trimmed_contig_69	F 20 R 21	59.55 60.67	50 42.86	TTCCTCTTCAGCTGTGACCA GGTTCTTCCAAATTCCAATGC
		F 20	59.79	42.80 50	GAACCGTTTATCCACCCTCA
37	Reproductive_(single)_trimmed_contig_70	R 20	60.03	55	GGCCTTCCTCCCAATCTAAG
20		F 20	59.76	50	AAGGAAGGTATTCCCCCAGA
38	Reproductive_(single)_trimmed_contig_80	R 20	59.87	50	CACCAACAGCTCAGAAACCA
39	Reproductive_(single)_trimmed_contig_82	F 20	60.15	45	AAAAGCCACAAACTCCAACG
57	reproductive_(single)_uninited_contig_02	R 20	59.74	45	TTTGTTGCTGAACCAACGTC
40	Reproductive_(single)_trimmed_contig_83	F 20	60.16	60	CCTTACTGCTCCTCGTCAGC
		R 20 F 20	59.67 60.05	45 40	TGGCAATCTCTGGAGGTTTT GTTTCGGCCTTTGATTTTCA
41	Reproductive_(single)_trimmed_contig_84	R 25	57.59	28	AGGAATGAAACAAGAATTTTCTACA
		F 20	60.07	55	CCAACCTCCCTTTCCTAAGC
42	Reproductive_(single)_trimmed_contig_85	R 20	60.06	55	AGGAGAGCCACACAAGCACT
43	Reproductive_(single)_trimmed_contig_86	F 20	59.13	35	TTTTCAAGAAATGGCACCAA
45	Reproductive_(single)_trinined_contig_80	R 20	59.76	45	GTTGCCTCATCCCCAAAATA
44	Reproductive_(single)_trimmed_contig_87	F 20	59.88	45	ACCAGCAGCGTCTCATTTT
	1 - 0 / 0-	R 20 F 20	59.54	45	CGAAAATCTGCATACCACCA
45	Reproductive_(single)_trimmed_contig_88	F 20 R 20	60.28 59.93	45 50	TGTGACAAGGGTTTTGCTGA AATCCACCATGTGCTCTTCC
		F 20	60.26	45	GCCAGCGATGAAACTTTGTT
46	Reproductive_(single)_trimmed_contig_89	R 20	60.12	40	ATCCGATCCATTTGGCATTA
47	Domenductive (-in-l-) tria 1 (1 01	F 20	60.46	50	TAGTTGGGATGCGACCCTTA
47	Reproductive_(single)_trimmed_contig_91	R 20	59.94	45	TACAATTTTCTGCGGGTTCC
48	Reproductive_(single)_trimmed_contig_92	F 20	60.04	50	TTGGGACTTGGAGATCTTGG
10	product.e_(onigie)_annined_contig_/2	R 20	59.90	50	GTTTTCCCCACTCCTGATGA
49	Reproductive_(single)_trimmed_contig_93	F 20	60.02	50	AGCAGCAACAGCATCATCAC
		R 20 F 20	59.78 60.21	55 50	CCAGCTGCTAGAAGGTTGCT GGCGATTACTCGGAAGTGAA
50	Reproductive_(single)_trimmed_contig_94	R 20	60.21	30 45	ACCACGACAATCCATTCCAT
<i>(</i>)		F 20	59.99	45	CTGAATTGAAAGCCACAGCA
60	Reproductive_(single)_trimmed_contig_95	R 20	59.55	45	CAAATTCAAGTCCCCAAAGC
61	Reproductive_(single)_trimmed_contig_96	F 20	59.42	55	GAAGATGTCGTCAGGTGCAG
01	reproductive_(single)_unnincu_contig_90	R 21	59.69	42.86	TCCCTTTAAGCCAAGATGACA
62	Reproductive_(single)_trimmed_contig_97	F 19	60.30	57.89	GCCGCACTCTTGCAGACTA
	· _ ~ 0 //_ · · · · · · 0 //	R 20	60.88	50	TAAAATCCACCACGGAGACG
63	Reproductive_(single)_trimmed_contig_98	F 20 R 20	58.89 59.67	40 50	TGCTTTCTTCGTTTTCATGG GCATGACGGAAAGGATAAGC
		F 25	60.09	48	TCTCTCTCTCTCTCTCTCTCTGTGC
64	Reproductive_(single)_trimmed_contig_100	R 22	59.36	36.36	TTGCTAAACCACCAATAATCCA
	ientation PI · Primer length Temp: Temperatur		- /	20.00	

* O: Orientation, PL: Primer length, Temp: Temperature

Index 1	Location or Gene ID	O PI			
1		F 20		GC (%) 40	Primer sequence TGCATTTATTTCTGCGGATG
	Maturity_(single)_trimmed_contig_1	R 20		50	ATAATCAGACGGAGGCGGTA
		F 20		50	TCCAACGAGCTTCCACTTCT
2	Maturity_(single)_trimmed_contig_2	R 20		50	TGGAAGATGGGTTGATAGGG
2	Maturity (signals) triumed and 2	F 20		60	CGGTATAGAGGCTGCTGAGG
3	Maturity_(single)_trimmed_contig_3	R 20		50	ACAGTTTTGCAGCGCCTATC
4	Maturity_(single)_trimmed_contig_4	F 20		50	TGTTGATGCTGCAACTCCTC
-	Waturity_(single)_umined_contig_4	R 20		45	CACAAGGGCCTAAACCAAAA
5	Maturity_(single)_trimmed_contig_5	F 20		55	GCTGCAGTTAAGGGAAGCTG
		R 20		55 45	TGCATTACCGGGACTAGGAG
6	Maturity_(single)_trimmed_contig_6	F 20 R 20		45 33.33	ATTCGAGAACCTCGCAAGAA CCAACCACAAAGTTATCATTTTTC
		F 20		55	GCTGCAGTTAAGGGAAGCTG
7	Maturity_(single)_trimmed_contig_7	R 20		55	TGCATTACCGGGACTAGGAG
7	Matanita (ain ala) tainana di aantia 11	F 20		50	TCCCAACTCATCAGTCTCCA
/	Maturity_(single)_trimmed_contig_11	R 20		43.48	CAAGTTGCAATAGACATGTGGTG
8	Maturity_(single)_trimmed_contig_12	F 20		50	GTCCATTGCTTCCCATCATC
Ŭ	inatarity_(single)_uninited_contig_12	R 21		50	GGACATGCACCAGGAAGTTT
9	Maturity_(single)_trimmed_contig_13	F 20		45	
		R 20 F 20		50 50	TCCGATCTTAAAGCCACTGC TGCCACCTTTGCTGTAAGTG
10	Maturity_(single)_trimmed_contig_14	F 20 R 20		50 45	CAAAGCAAAATCTCCGTTCC
		F 27		33.33	GGATCAACATTTATAACTCCTGTATGA
11	Maturity_(single)_trimmed_contig_18	R 20		40	TGATTGCTTCTTTCCCCAAT
10		F 20		50	TCAGCTTCTGTGGCTCTTCA
12	Maturity_(single)_trimmed_contig_19	R 20	59.96	55	CCAGGTCCACCTCATCACTT
13	Maturity_(single)_trimmed_contig_21	F 20		50	CCACAAGACAAGGCTGCATA
15	Maturity_(single)_umined_contig_21	R 20		45	ATCTTGCTTGTGCAGTTGCT
14	Maturity_(single)_trimmed_contig_23	F 20		50	GCATCCAAAAGGGAGGGTAT
		R 20 F 20		60 50	GCTACTACCAGAGGCCAACG
15	Maturity_(single)_trimmed_contig_24	F 20 R 20		45	TGGCTCTTCTTCGACAAACC AGGACAAAGAAAACCCAGCA
		F 20		50	AGGACCGAAACGAAGAAACC
16	Maturity_(single)_trimmed_contig_27	R 20		50	CACGCATAATCCTTCACCTC
17	Maturity_(single)_trimmed_contig_28	F 20		45	TAAGGGGTCAGCAAAATTGG
17	Maturity_(single)_trinined_contig_28	R 20		45	AGGAATTTGCCCAGGAATCT
18	Maturity_(single)_trimmed_contig_29	F 20		45	CCCCAAATCATTCCAACAGT
		R 20		45	GCCTTCCAAGTTCAAATCCA
19	Maturity_(single)_trimmed_contig_32	F 20		50 40	GTGAAAGGTCCATTGCCAGT TCAATGCTGCTGCAAAAATC
		R 20		50	CAATGAAGCCTGGAAAGACC
20	Maturity_(single)_trimmed_contig_33	R 20		60	GAGCGAGCTTGAGTGGAGTC
1		F 20		60	CTCCGACCTCTCTTCCCTCT
21	Maturity_(single)_trimmed_contig_34	R 20		50	GGGTTCATGTTGTGATGCTG
22	Maturity_(single)_trimmed_contig_38	F 21		52.38	TCTCCCCTAATTCCCACACTC
	maturity_(single)_trimmeu_contig_30	R 20		50	GCATCAGGATCTGGTGTTGA
23	Maturity_(single)_trimmed_contig_43	F 20		50	AGATCTGGATTACGGCAACG
		R 20		50 36.36	AGTTGGCACTGGGAAACTTG
24	Maturity_(single)_trimmed_contig_44	F 22 R 20		36.36 45	TGGCATTTCCATATGTTTCTTC TCCCACTAAAATTCCCTCCA
		F 21		52.38	GGTGTTGCTAATGGAGGTCTG
25	Maturity_(single)_trimmed_contig_47	R 20		45	AGGCCTTTCTGAAGCATGAA
26	Maturity (angle) trimmed	F 23		39.13	GAGATAGAAAAGGAAAGGGGATT
26	Maturity_(single)_trimmed_contig_48	R 20	59.95	55	GGATCAAGAGACGGCTGAAG
27	Maturity_(single)_trimmed_contig_50	F 20		50	CCACAGTTTCCTTCGTTGCT
		R 21		33.33	TCAACCAAGAAAATTCCTTCA
28	Maturity_(single)_trimmed_contig_57	F 20 R 20		50	CGGCACCACAGTTTAGGAAT
		R 20 F 20		50 45	AGCAGTAATGGCGGAGAAGA AGAAGCACGAGGCAAAGAAA
29	Maturity_(single)_trimmed_contig_59	F 20 R 20		45 45	GGATTCACATCAGCATGCAA
	· · · · · · · · · · · · · · · · · · ·	F 20		50	ACTCTGTTGCCAGGGATGAT
30	Maturity_(single)_trimmed_contig_60	R 20		50	TCCCTCAAGGACTTTTCTGG
31	Maturity_(single)_trimmed_contig_61	F 20	60.28	55	CTGTTGCCAGGGATGCTAGT
51		R 20		45	TCAGGGTTGAACAACAACCA
32	Maturity_(single)_trimmed_contig_63	F 20	58.96	40	GCAAAAGCGTAATTGTCGAA

 Table 3: List of SSR markers developed by using BatchPrimer3 web tool from maturity stage.

		R 2	20	60.23	40	TCATTGGCGAAAGTGTTTCA
22		F 2	20	60.30	45	TTCCCGATACCAAAGGAACA
33	Maturity_(single)_trimmed_contig_64		20	60.74	50	TTGGACCACGAATAGGTTGG
24		F 2		59.63	52.38	TGCTACAACTGAGGCTCCTTC
34	Maturity_(single)_trimmed_contig_66	R 2	20	60.40	55	TTGGAGCAGTTCCAGTAGCC
35	Materity (in als) triumed antis (9	F 2	20	60.07	50	AGAATGGGGTTGATGAGCAG
35	Maturity_(single)_trimmed_contig_68	R 2	20	60.12	50	GCAGTTTCCACCGAGTTGAT
36	Maturity (cingle) trimmed contig 70		20	60.06	50	TAGTGCAAACCAGTGCAAGC
50	Maturity_(single)_trimmed_contig_70		20	59.93	50	GGTGAAGGTGGCTCATCATT
37	Maturity_(single)_trimmed_contig_73		20	60.07	50	AAGAGCCTCCTTCCAATGGT
57	Maturity_(single)_trinined_contig_/3		20	60.07	45	ATTTCCTTGGAGCGGAAAGT
38	Maturity_(single)_trimmed_contig_74		20	60.26	55	ACAAGGAGACATGCCCTCAG
30	Maturity_(single)_trinined_contig_/4		20	59.82	50	CCCCTTGTTGTCCAAGATGT
39	Maturity_(single)_trimmed_contig_75		20	60.01	50	GGATCAGGACGAGATTCCAA
39	39 Maturity_(single)_unnined_conug_73		20	59.94	55	CCCTCTGCTCCTTGATTCTG
40	Maturity_(single)_trimmed_contig_77		20	59.99	50	AGGGAACTTCTCGCTGAACA
40	Maturity_(single)_trinined_contig_//		20	60.07	55	CACCCCCAACAGGATATACG
41	Maturity_(single)_trimmed_contig_78		20	60.05	55	GTGGTCCCATGGGTAGAATG
71	Maturity_(single)_trinined_contig_76		20	59.41	45	TCCCATTCATCATGCTC
42	Maturity_(single)_trimmed_contig_79		20	60.04	45	CAAACCGAGAGGGAATTTCA
72	Maturity_(single)_trinined_contig_79		20	59.97	45	CATTTTGGTTTGGCCACTCT
43	Maturity_(single)_trimmed_contig_83		20	60.41	55	ACAGGAGTGGCAGATCGAAG
-13	Matarity_(single)_trimined_contig_05		20	59.93	50	ACGCACATTACAAGCTGACG
44	Maturity_(single)_trimmed_contig_85		20	60.07	45	AAAACCCTCGCTCAAATCCT
	matarity_(single)_trimined_contig_05		20	60.13	45	AAGCTTCGCCTTCAACTCAA
45	Maturity_(single)_trimmed_contig_87		9	60.56	47.37	AAAAGCTGCTGATGGCACA
	induity_(single,_uninited_contig_0)		20	59.30	55	GACTTGTCCAGAGCCAACCT
46	Maturity_(single)_trimmed_contig_88		20	60.11	50	TGGTGGTGCTCTACCATTGA
			20	58.85	45	TGTTGCATTTGGAAGAGGAG
47	Maturity_(single)_trimmed_contig_91	F 2		59.96	55	CCACTCTTTGGGAGGTGGTA
	Waturity_(Shigle)_unimicd_contra	R 2	20	60.07	50	AAGGTGGATGCCATCTTGAG

* O: Orientation, PL: Primer length, Temp: Temperature

Validation of SSR markers in three developmental stages

In order to validate the SSR primers, 30 SSRs were selected manually out of 189 primers for their validation in genotypes of fenugreek (GMV- 2). Criteria used to select the SSR primers for validation purpose was based on the melting temperature (Tm) and GC content (GC%) of the primers. Those primers were selected which were having melting temperature above 55°C and GC% above 40% and primers were choosen from those contigs which were involved in either biological or cellular or molecular process. Details of primers was given in (Table 4).

The agarose gel electrophoresis was used to separate amplified product of SSR primers. The performance of individual primer to amplify cDNA of different developmental stages that were vegetative, reproductive and maturity stages of GMV-2 genotype is discussed as under.

30 selected SSR markers from all the three developmental stages of fenugreek. 10 from each vegetative stage, reproductive stage and maturity stage were validated in different developmental stages of GMV-2 *viz.*, vegetative stage, reproductive stage and maturity stage for this 6 different combinations were made that are represented as follows.

- 1. Primers developed from reproductive stage were checked in cDNA of vegetative stage.
- 2. Primers developed from vegetative stage were checked in cDNA of reproductive stage.
- 3. Primers developed from maturity stage were checked in cDNA of vegetative stage.
- 4. Primers developed from maturity stage were checked in cDNA of reproductive stage.
- 5. Primers developed from reproductive stage were checked in cDNA of maturity stage.

6. Primers developed from vegetative stage were checked in cDNA of maturity stage.

In first combination, (reproductive primers + vegetative stage cDNA) (Figure 2) only nine primers of reproductive stage amplified the cDNA of vegetative stage, and those primers were involved in carbohydrate metabolic process, cellular amino acid metabolic process, oxidation-reduction process, translational initiation, protein metabolic process, single-organism process, cytoplasm, cell wall and integral component of membrane. These functions are common in both the stages. It is concluded that among 10 primers of reproductive stage, nine primers gave results in both stages and remaining one primer were specific to reproductive stage only.

In second combination, (vegetative stage primers + reproductive stage cDNA) (Figure 3) among 10 primers used only five primers of vegetative stage amplified the cDNA of reproductive stage. It means from those sequences vegetative primers were developed responsible for functions like, casein kinase, LOV-domain containing, protein binding, catalytic activity, proteolysis and metal ion binding are present in both vegetative stage and reproductive stage. The remaining five primers which did not gave any bands in reproductive stage cDNA. It shows that the remaining five primers performing functions like zinc ion binding, translation initiation factor activity, GT Pase activity, translational initiation, ubiquitinprotein transferase activity and membrane activity these are perticularly for vegetative stage and not in reproductive stage. It is concluded that among 10 primers of vegetative stage, five primers were given results in both stages and remaining five primers were specific to vegetative stage only.

In third combination, (maturity stage primers + vegetative stage cDNA) (Figure 4) among 10 primers used only three

primers of maturity stage amplified the cDNA of vegetative stage. It means from those sequences maturity primers were developed responsible for functions like, RNA– dependent RNA polymerase, RNA binding, hydrolase activity, RNA processing, transcription and UBP1-aasociated 2A-like are present in both maturity stage and vegetative stage. The remaining seven primers which does not gave any bands in vegetative stage cDNA. It shows that the remaining seven primers performing functions like RNA–dependent RNA polymersase, methyl transferase, acting on acid anhydrides, mRNA methylation and purine nucleobase metabolic process these are perticularly for maturity stage and not in vegetative stage. It is concluded that among 10 primers of maturity stage, three primers were given results in both stages and remaining seven primers were specific to maturity stage only.

In fourth combination, (maturity stage primers + reproductive stage cDNA) (Figure 5) among 10 primers used only three primers of maturity stage amplified the cDNA of reproductive stage, it means from those sequences maturity primers were developed responsible for functions like, RNA -dependent RNA polymerase, RNA binding, hydrolase activity, RNA processing, transcription are present in both maturity stage and reproductive stage. The remaining seven primers which did not gave any bands in reproductive stage cDNA. It shows that the remaining seven primers performing functions like RNA-dependent RNA polymersase, methyl transferase, acting on acid anhydrides, mRNA methylation these are perticularly for maturity stage and not in vegetative stage. It is concluded that among 10 primers of maturity stage, three primers were gave results in both stages and remaining seven primers were specific to maturity stage only.

In fifth (reproductive stage primers + maturity stage cDNA) and sixth (vegetative stage primers + maturity stage cDNA) did not gave any amplifications in maturity stage cDNA. It revealed that primers of these stages which were specific to reproductive and vegetative stage not in maturity stage.

Zheng et al. (2013)^[4] they got a total of 10,754 primer pairs were designed for marker development out of these they used 320 primers were synthesized and used for validation of amplification and assessment of polymorphisms in 25 individual plants. The total of 275 primer pairs yielded PCR amplification products. In present study, total 189 primers developed from all the three developmental stage, out of which 10 primers from each developmental stage used for validation purpose in fenugreek variety GMV- 2. Parmar et al. (2015)^[3] they developed 11 EST–SSR markers from 742 available ESTs of Withania somnifera L. EST sequences and 95 SSR primer pairs derived from other solanaceous crops (tomato, eggplant, chili, and tobacco) were utilized for their amplification and validation. Out of 11, 10 EST-SSRs showed good amplification quality and produced 13 loci with a product size ranging between 167 and 291 bp. In present study, validation of SSR markers in fenugreek variety GMV-2, 10 primers from one developmental stage used for amplification of another developmental stage (Primers developed from reproductive stage were checked in cDNA of vegetative stage) in this case, only nine primers of reproductive stage amplified the cDNA of vegetative stage, the remaining one primer did not amplified the cDNA of vegetative stage, means that one primer specific to reproductive stage only.

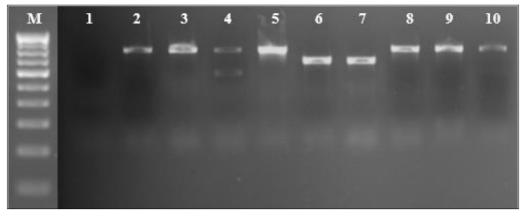


Fig 2: Validation image of primers of reproductive stage + cDNA of vegetative stage

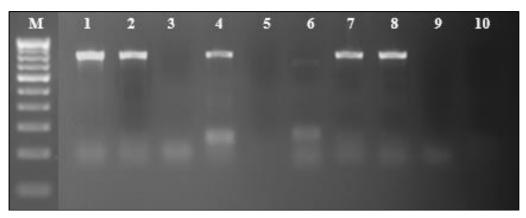


Fig 3: Validation image of primers of vegetative stage + cDNA of reproductive stage

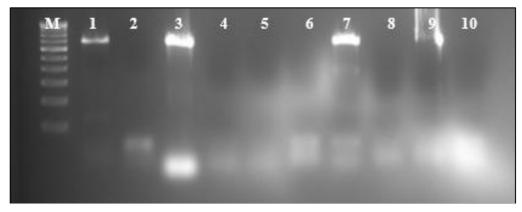


Fig 4: Validation image of primers of maturity stage+ cDNA of vegetative stage

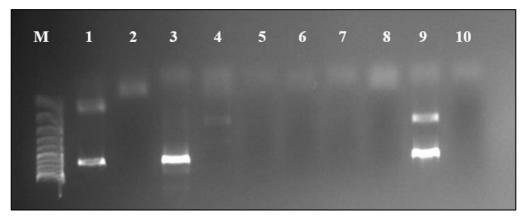


Fig 5: Validation image of primers of maturity stage+ cDNA of reproductive stage

Index	Location or Gene ID	Primer sequence	PL	Temp (°C)	GC (%)
	(a)	Vegetative stage			
1	Vegetative_(single)_trimmed_contig_32	GAACCGGGACATTGACTGTT	20	59.83	50
1		TGTTGCCACCTTCATCTTGA	20	60.24	45
2	Vegetative_(single)_trimmed_contig_33	CAAGTTCCCTGGGGATGATA	20	59.74	50
2		CACTTTCGACACCACACCTG	20	60.19	55
2	Vegetative_(single)_trimmed_contig_37	GGACGTGGACCTTCTTCTGA	20	60.24	55
3		TCGAGATTTGCCCCTAATTG	20	60.03	45
4	Vegetative_(single)_trimmed_contig_38	GGCTCAACAACTGACAAGCA	20	60.03	50
4		TCTGGACTGTTCCTCATCCA	20	59.18	50
5	Vegetative_(single)_trimmed_contig_40	GCATTTGCCAAGGATGTTTT	20	59.94	40
5		GTACAAAGGGCAGGGACGTA	20	59.99	55
6	Vegetative_(single)_trimmed_contig_41	CAATGGTGGTGCTGAAACTG	20	60.15	50
6		CGTGGGCAATGACTCAAAGT	20	61.10	50
7	Vegetative_(single)_trimmed_contig_42	GGTGAATCGCTTGATTCGTT	20	60.08	45
7		CACTTCAAAACGCCCATACA	20	59.58	45
0	Vegetative_(single)_trimmed_contig_43	TGCAAGAAGCAAGATGGCTA	20	59.71	45
8		TTCAGAATGACCAGCACTCG	20	59.98	50
0	Vegetative_(single)_trimmed_contig_44	TCAGGGAGGAGAAATCCTGA	20	59.73	50
9		GTTAGCATGGCCAGGTTGTT	20	60.00	50
10	Vegetative_(single)_trimmed_contig_46	CTCAGACGCAGATTCCAACA	20	59.98	50
10		ACGAACATGTTTCAGCCACA	20	60.16	45
	(b) l	Reproductive stage			
11	Reproductive_(single)_trimmed_contig_6	TCAAACAATATGGCCACAGC	20	59.55	45
11		AGGAGGTACCAATCCCCAAC	20	60.05	55
12	Reproductive_(single)_trimmed_contig_7	TATTGCAATTCGCAAAACCA	20	60.07	35
12		CAGTCGAAACGTAGCCATCA	20	59.86	50
12	Reproductive_(single)_trimmed_contig_8	CAGCTCATGCTGTTGATGCT	20	60.17	50
13		GCCGCTCTATCAAGTTCAGG	20	59.98	55
1.4	Reproductive_(single)_trimmed_contig_10	TGAGAAGGAAAGCAAATTGTGA	20	59.86	36.36
14		AGGCTGAAGCTCAGTTGCAT	20	60.16	50
1.5	Reproductive_(single)_trimmed_contig_11	GGTCAAAGTCGCTTCACCAT	20	60.12	50
15		CGGGGACGAAGTTAGTAGCA	20	60.26	55
16	Reproductive_(single)_trimmed_contig_12	GATCTGGTGGACCGAGTTTT	20	58.99	50
16		GGCTGGCCAAACTTATTCAT	20	59.05	45

 Table 4: List of SSR markers used for validation purpose from different developmental stages of fenugreek.

17	Reproductive_(single)_trimmed_contig_13	CATCCAATGGAGATGGTGGT	20	60.60	50
17		GCCGGCCAAACTTATTCAT	20	59.91	47.37
18	Reproductive_(single)_trimmed_contig_14	TCACATGCCATCTTCACCAT	20	59.93	45
10		AGGCTCCTTTTAAGCCCATC	20	59.69	50
19	Reproductive_(single)_trimmed_contig_15	GCCACTTGCACTTCTCATCA	20	59.99	50
19		CATCAGCATCTCCGTCAAGA	20	59.94	50
20	Reproductive_(single)_trimmed_contig_23	AATTTTAGGGGACGGCATTT	20	59.68	40
20		GCTCTGAGAATCCCTCAACG	20	59.95	55
	(c)) Maturity stage			
21	Maturity_(single)_trimmed_contig_2	TCCAACGAGCTTCCACTTCT	20	59.99	50
21		TGGAAGATGGGTTGATAGGG	20	59.74	50
22	Maturity_(single)_trimmed_contig_3	CGGTATAGAGGCTGCTGAGG	20	59.99	60
22		ACAGTTTTGCAGCGCCTATC	20	60.42	50
23	Maturity_(single)_trimmed_contig_7	GCTGCAGTTAAGGGAAGCTG	20	60.15	55
25		TGCATTACCGGGACTAGGAG	20	60.09	55
24	Maturity_(single)_trimmed_contig_23	GCATCCAAAAGGGAGGGTAT	20	60.15	50
24		GCTACTACCAGAGGCCAACG	20	59.90	60
25	Maturity_(single)_trimmed_contig_64	TTCCCGATACCAAAGGAACA	20	60.30	45
23		TTGGACCACGAATAGGTTGG	20	60.74	50
26	Maturity_(single)_trimmed_contig_73	AAGAGCCTCCTTCCAATGGT	20	60.07	50
20		ATTTCCTTGGAGCGGAAAGT	20	60.07	45
27	Maturity_(single)_trimmed_contig_74	ACAAGGAGACATGCCCTCAG	20	60.26	55
27		CCCCTTGTTGTCCAAGATGT	20	59.82	50
28	Maturity_(single)_trimmed_contig_75	GGATCAGGACGAGATTCCAA	20	60.01	50
20		CCCTCTGCTCCTTGATTCTG	20	59.94	55
29	Maturity_(single)_trimmed_contig_77	AGGGAACTTCTCGCTGAACA	20	59.99	50
29		CACCCCCAACAGGATATACG	20	60.07	55
30	Maturity_(single)_trimmed_contig_78	GTGGTCCCATGGGTAGAATG	20	60.05	55
30		TCCCATTCATCATCATGCTC	20	59.41	45

* PL: Primer length, Temp: Temperature

4. Conclusion

Fenugreek (*Trigonella foenum-graecum* L.) is extensively used as a spice crop in India and the Mediterranean region and is known to possess a number of medicinal properties. Steroidal sapogenins and mucilaginous fibers present in the seed and leaves of this legume plant contribute to antidiabetic and hypocholesterolaemic properties attributed to the plant. Microsatellites are the important resource for determining functional genetic variation. SSRs were identified by using Batchprimer3 bioinformatic tool. The SSRs containing sequences (fasta file) which generated after assembly were analyzed for NCBI-BLASTn to get the hits. The developed molecular markers are foundation for further genetic linkage analysis and gene localization and they will be essential to accelerate the process of breeding.

The data generated from present study will be usefull to accelerate the breeding programme in *Trigonella foenum-graecum* L. It is a viable alternative source for different metabolites like, isoleucine, sapogenins and galactomannans production. Transcripts generated in the present study will be useful in the understanding different metabolites processes and formation. The similarity distribution showed, maximum similarity of *Trigonella foenum-graecum* L. with *Medicago truncatula*, *Medicago ipaensis*, *Cicer arietinum*, *Arachis ipaensis*, *Arachis duranensis* and *Glycine max*. This transcriptomic information will be useful in genetic engineering of *Trigonella foenum-graecum* L.

5. References

- 1. BBC. Food Fenugreek recipes, 2017.
- 2. Raju Sajad S, Pradyuman K. Fenugreek: A review on its nutraceutical properties and utilization in various food product. Journal of the Saudi Society of Agricultural Sciences. 2004; 10:23-26.
- 3. Parmar EK, Ranbir S, Fougat Chandni, Patel B, Harshvardhan Zala N. Mahesh Patel A *et al.* Validation

of dbEST-SSRs and transferability of some other solanaceous species SSR in Ashwagandha (*Withania Somnifera* L.). Biotechnology. 2015; 5(6):933-938.

4. Zheng X, Pan C, Diao Y, You Y, Yang C, Hu Z. Development of microsatellite markers by transcriptome sequencing in two species of *Amorphophallus* (Araceae). BMC Genomics. 2013; 16:818.