International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(4): 1690-1695 © 2018 IJCS Received: 12-05-2018 Accepted: 17-06-2018

AM Bhosale

Assistant Professor, (Horticulture), Department of Horticulture, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

SM Harimohan

PG Student, Department of Horticulture, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

SJ Syed

PhD Scholar, Department of Horticulture, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Correspondence AM Bhosale Assistant Professor, (Horticulture), Department of Horticulture, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

Effect of organic and inorganic fertilizers on vegetative growth, and reproductive growth parameters of sapota (*Manilkara achras* Forsberg) Var. Kalipatti

AM Bhosale, SM Harimohan and SJ Syed

Abstract

The present investigation was conducted at Department of Horticulture, Vasantrao Naik Marathwada Agriculture University, Parbhani during the year 2009-10. The experiment was laid out in randomized block design with three replication and ten treatments. In this investigation the sapota tree were applied with different organic and inorganic fertilizers and their combination namely T_1 (100% RDF), T_7 (100% FYM), T_3 (100% Vermicompost), T_4 (50% FYM + 50% Vermicompost), T_5 (75% RDF + 25% FYM), T_6 (50% RDF + 50% FYM), T_7 (25% RDF + 75% FYM), T_8 (75% RDF + 25% Vermicompost), T_9 (50% RDF + 50% Vermicompost) and T_{10} (25% RDF + 75% Vermicompost). The effects of these treatments were noted on vegetative growth, reproductive growth, and yield attributes of sapota. The results of experimentation on confirmed the efficiency of integration of organic and chemical fertilizers for better growth, and yield of sapota. The application of 50% RDF + 50% Vermicompost enhanced the vegetative and reproductive growth as well as yield attributes.

Keywords: Sapota, Kalipatti, FYM, RBD vermicompost

1. Introduction

Sapota (*Manilkara achras*), it is a native of tropical America and probably originated in the southern Mexico (Papenoe, 1974)^[8]. It is not known when sapota first introduced to India, but sapota cultivation was taken up for the first time in Maharashtra in 1898 in a village named Gholwad & district Thane (Chadha 1993)^[6].

Sapota is a good source of digestible sugar which ranges from 12 to 18 percent. Composition of ripe sapota per 100 g of edible portion is moisture 73.7 g, carbohydrates 21.4 g, protein 0.7 g, fat 1.1 g, calcium 28.0 mg and phosphorus 27.0 mg (Shanmugavelu and Srinivasan, 1973) ^[9]. Area of this fruit is on ascendancy due to high production per unit area, liking to Indian palate, continuous fruiting throughout the year in humid climate and hardy nature of crop against biotic and abiotic stresses. Sapota has become one of the important fruit in southern and western parts of country due to its wild range of adaptability, low production costs and reasonably high economic returns with very low pest and diseases susceptibility (Singh, 1991)^[10]. In 1953, the area under this crop was 800 ha. only but now area increases also in non-coastal area of country. India is leading producer of sapota and area under sapota is estimated to be 156 lakh ha. with a production of 1308 million tonnes (Anonymous, 2009)^[1, 2]. In Maharashtra an area of sapota is about 65.4 lakh ha. concentrated in coastal region particularly in Thane district. Production of Maharashtra is about 298.7 million tonnes. There is significant increase in area from 1990, an account of implementation of EGS scheme. However, in Marathwada area under this crop is increasing recently at and very rapid rate it is 0.11 lakh ha with production of 41,072 metric tonnes (Anonymous 2009) ^[1, 2]. Now the sapota crop is included in the scheme of National Horticulture Mission from 2005. The Kalipatti cultivar is the main choice of the farmers and therefore, 99 per cent area under sapota is under this cultivar. Sapota crop is highly responsive to fertilizers (Durrani et al, 1982)^[7]. Experiments conducted at the Regional Fruit Research Station, Gujarat Agricultural University, Navsari indicated that sapota crops needs N, P and K nutrients for higher fruits production with better quality (Anon., 1984) ^[4]. On organic manure for sapota orchardists is 200 kg FYM/tree for getting highest production of fruits and net return (Anon., 2003a). Sapota fruit demand good nutrition and respond well to fertilization.

Among major nutrient, nitrogen is most important element, which influences growth and productivity of sapota.

At present condition it is not possible to completely eliminate the use of chemical fertilizers. For this dose of chemical fertilizer need to be gradually reduced and balanced by increasing the use of optimum quantity of organic manures particularly FYM, sheep manure and poultry manures etc. Organic manures are the soil store house for nitrogen supply to plant. There is very little inorganic nitrogen in soil and much of it is obtained by the conversion of organic forms. Sapota is a major important fruit crop grown in Maharashtra, Gujarat, Karnataka, Tamil Nadu, Andhra Pradesh and Kerla. It gives fruits throughout the year. Use of various organic manures and fertilizers is a good practice to obtain higher yield with good quality fruits.

Organic farming is a production system which favours maximum use of organic material (crop residues, animal excreta, legumes on and off farm organic wastes, bio pesticides etc.) and discourages the use of synthetically produced agro inputs for maintaining soil productivity and fertility and pest management under conditions of sustainable natural resources and healthy environment.

According to Padmashree R.S. Paroda (ICAR) "Today we need an integrated intensive Farming System (IIFS) which provides a pathway to achieving an evergreen revolution in agriculture". The choice of using organic vs conventional farming system depends upon a number of factors including the availability of land, population density and associated demand for food, fibre, feed and fuel and capability of consumers to pay higher price for farm produce and it is more sustainable and does less damage to the environment and for minimum utilization of natural resources. Looking to the above recent aspects this experiment has been carried out with keeping in mind following objectives.

2. Material and Methods

The present was conducted at the Department of Horticulture, Vasantrao Naik Marathwada Agricultural University, Parbhani during the year 2009-10. The experimental trees used were 35 years old grafts of chiku var. Kalipatti on Khirni (*Manilkara hexandra*) root stock spaced at 10x10 metres.

Treatment Details

Treatment details the different treatment combinations of organic and inorganic fertilizer were ten, as given below.

Tr. No	Treatment details	
T ₁	100% RDF viz., 1000:500:500 NPK (g/tree)	
T2	100% FYM	
T3	100% Vermicompost	
T ₄	50% FYM + 50% Vermicompost	
T5	75% RDF + 25% FYM	
T ₆	50% RDF + 50% FYM	
T ₇	25% RDF + 75% FYM	
T8	75% RDF + 25% Vermicompost	
T9	50% RDF + 50% Vermicompost	
T ₁₀	25% RDF + 75% Vermicompost	

Recommended dose of fertilizers

- 1. Recommended dose of N, P and K @ 1000:500:500 g/tree.
- 2. Dose of FYM application calculated on the basis of their nitrogen content. (NPK of FYM 0.5:0.2:0.5).
- 3. Dose of Vermicompost application calculated on the basis of their Nitrogen content. (NPK of Vermicompost 3; 1.0:1.5).

3. Results and Discussion

Various aspect of growth parameters of sapota were studied and observation in respect of days required for sprouting of new shoot, length of shoot, girth of shoot, number of leaves per shoot, leaf area, days to initiation of flowering from application of treatment, number of flowers per shoot, percentage of flowers drop, percentage of fruit set, number of fruits per shoot, percentage of fruits drop, final retention of fruits per shoot, days required for maturity, number of fruits per tree, as affected by various organic and inorganic fertilizers viz. FYM, Vermicompost and chemical fertilizers these combinations were studied and the data on various parameters were recorded during the investigation had been subjected to statistical analysis and the results are presented in this chapter.

3.1 Vegetative growth parameters

3.1.1 Days required for sprouting of new shoots

The data in respect of average number of days required for sprouting of new shoot in various treatments are presented in Table 1.

Tr. No.	Treatment details	Days required for sprouting of new shoots
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	26.74
T_2	100% FYM	31.25
T ₃	100% Vermicompost	30.12
T_4	50% FYM + 50% Vermicompost	30.67
T5	75% RDF + 25% FYM	28.38
T ₆	50% RDF + 50% FYM	25.96
T ₇	25% RDF + 75% FYM	29.82
T ₈	75% RDF + 25% Vermicompost	27.92
T9	50% RDF + 50% Vermicompost	24.93
T10	25% RDF + 75% Vermicompost	29.00
	Mean	28.48
	SE_{\pm}	0.71
	CD at 5%	2.11

 Table 1: Effect of organic and inorganic fertilizers on days required for sprouting of new shoots

The data revealed that there were significant effect of 50% RDF and 50% Vermicompost on sprouting of new shoot. The treatment T_9 (50% RDF + 50% Vermicompost) produced significantly earlier sprouting of new shoot than all other treatments except T_6 and T_1 which were found to be statistically at par with the treatment T_9 . The treatment T_9 (50% RDF + 50% Vermicompost) showed earliness in sprouting which took minimum number of days for sprouting of new shoot (24.93days) followed by the treatment T_2 recorded late sprouting of new shoot (31.25 days) except T_4 , T_3 and T_7 which were found to be statistically at par with the treatment T_2 .

3.1.2 Length of shoot

The data in respect length of shoot were presented in Table 2 revealed that there were significant effects of organic and inorganic fertilizers on length of shoot. The treatment T₉ (50% RDF + 50% Vermicompost) showed significantly more shoot length than treatments T₇, T₃, T4 and T₂. The treatment T₉ was found to be statistically at par with treatments T₆, T₁, T₈, T₅, and T₁₀. The treatments T₉ (50% RDF + 50% Vermicompost) showed more shoot length (12,55 cm) followed by treatments T₆- 50% RDF + 50% FYM (12.52 cm). Significantly less length of shoot was recorded in

treatment $T_2\text{-}~100\%$ FYM (11.70 cm) and was found to be statistically at par with treatments $T_4,\,T_3$ and $T_7.$

 Table 2: Effect of organic and inorganic fertilizers on length of shoot

Tr. No.	Treatment details	Length of shoot (cm)
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	12.48
T ₂	100% FYM	11.70
T3	100% Vermicompost	11.91
T_4	50% FYM + 50% Vermicompost	11.91
T ₅	75% RDF + 25% FYM	12.28
T_6	50% RDF + 50% FYM	12.52
T ₇	25% RDF + 75% FYM	12.02
T ₈	75% RDF + 25% Vermicompost	12.46
T9	50% RDF + 50% Vermicompost	12.55
T ₁₀	25% RDF + 75% Vermicompost	12.23
	Mean	12.21
	SE <u>+</u>	0.13
	CD at 5%	0.40

3.1.3 Girth of shoot (cm)

The data recorded regarding girth of shoot presented in Table 3 showed that there were significant treatment differences on girth of shoot at all observation.

The treatment T₉ (50% RDF + 50% Vermicompost) recorded significantly more girth of shoot than all other treatment except the treatments T₆, T₁ and T₈ which were found to be statistically at par with treatment T₉.The maximum girth of shoot was recorded in treatment T₉- 50% RDF + 50% Vermicompost (2.04 cm) followed by T₆-50% RDF + 50% FYM (1.94 cm) and T₁ 100% RDF (1.87 cm). The minimum girth of -shoot was observed in treatment T₂- 100% FYM (1.49 cm) among all the treatments.

Tr. No.	Treatment details	Girth of shoot (cm)
T 1	100% RDF viz., 1000:500:500 NPK (g/tree)	1.87
T ₂	100% FYM	1.49
T3	100% Vermicompost	1.57
T ₄	50% FYM + 50% Vermicompost	1.54
T ₅	75% RDF + 25% FYM	1.77
T ₆	50% RDF + 50% FYM	1.94
T7	25% RDF + 75% FYM	1.62
T ₈	75% RDF + 25% Vermicompost	1.85
T9	50% RDF + 50% Vermicompost	2.04
T ₁₀	25% RDF + 75% Vermicompost	1.65
	Mean	1.73
	$SE\pm$	0.075
	CD at 5%	0.225

 Table 3: Effect of organic and inorganic fertilizers on girth of shoot

3.1.4 Number of leaves per shoot

The data in respect number of leaves per shoot are presented in Table 4. The data revealed that there were significant differences between the treatment mean showing that the number of leaves was affected by different treatments.

The combination of 50% RDF and 50% Vermicompost resulted in maximum number of leaves. The treatments T₉ (50% RDF + 50% Vermicompost) was at par with T₆ (50% RDF + 50% FYM) and T₁ (100% RDF) treatments.

 Table 4: Effect of organic and inorganic fertilizers on number of leaves per shoot

Tr. No.	Treatment details	Treatments Number of leaves/shoot
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	25.69
T_2	100% FYM	23.12
T ₃	100% Vermicompost	23.88
T ₄	50% FYM + 50% Vermicompost	23.56
T ₅	75% RDF + 25% FYM	24.78
T ₆	50% RDF + 50% FYM	26.32
T ₇	25% RDF + 75% FYM	23.97
T8	75% RDF + 25% Vermicompost	25.07
T9	50% RDF + 50% Vermicompost	26.93
T10	25% RDF + 75% Vermicompost	24.20
	Mean	24.75
	SE <u>+</u>	0.52
	CD at 5%	1.55

The treatment T₉ (50% RDF + 50% Vermicompost recorded maximum number of leaves per shoot (26.93) followed by T₆-50% RDF + 50% FYM (26.32). The treatment T₂- 100% FYM recorded significantly minimum number of leaves (23.12) per shoot.

4.1.5 Leaf Area (cm²)

The data presented in Table 5. showed that effect of different organic and inorganic fertilizers played a significant role in affecting leaf area.

Table 5: Effect of	of organic	and inorgani	c fertilizers	on leaf area
--------------------	------------	--------------	---------------	--------------

Tr. No.	Treatment details	Treatments Leaf area (cm ²)
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	19.70
T ₂	100% FYM	18.51
T ₃	100% Vermicompost	18.58
T ₄	50% FYM + 50% Vermicompost	18.52
T ₅	75% RDF + 25% FYM	19.52
T ₆	50% RDF + 50% FYM	19.82
T ₇	25% RDF + 75% FYM	18.74
T ₈	75% RDF + 25% Vermicompost	19.63
T9	50% RDF + 50% Vermicompost	19.82
T10	25% RDF + 75% Vermicompost	18.79
	Mean	19.16
	SE <u>+</u>	0.27
	CD at 5%	0.80

3.2 Reproductive growth (flowering and fruiting)

The effect of organic and inorganic fertilizers on flowering and fruiting characters such as number of days required for first flower initiation, number of flowers per shoot number of fruits per shoot percentage of flower drop, percentage of fruit set, percentage of fruits drop, final retention of fruits per shoot and number of fruits per tree are presented under appropriate heads.

3.2.1 Days to initiation of flowering from application of treatment

The data in respect of average number of days required for appearance of first flower in various treatments are presented in Table 6 $\,$

 Table 6: Effect of organic and inorganic fertilizers on days to initiation of flowering from application of treatment

Tr. No.	Treatment details	Treatments Initiation of flowering (days)
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	82.77
T_2	100% FYM	87.25
T ₃	100% Vermicompost	86.10
T_4	50% FYM + 50% Vermicompost	86.67
T 5	75% RDF + 25% FYM	84.15
T ₆	50% RDF + 50% FYM	81.92
T ₇	25% RDF + 75% FYM	85.12
T ₈	75% RDF + 25% Vermicompost	83.50
T9	50% RDF + 50% Vermicompost	80.96
T ₁₀	25% RDF + 75% Vermicompost	85.00
	Mean	84.34
	SE <u>+</u>	0.84
	CD at 5%	2.51

The data revealed that there were significant effects of 50% RDF + 50% Vermicompost on flowering. The treatment T₉ (50% RDF + 50% Vermicompost) produced significantly earlier initiation of flowering than all other treatments except T₆ and T₁, which were found to be statistically at par with the treatment T₉. The treatment T₈, T₅, T₁₀, and T₇ were statistically similar and at par to each other and significantly superior over the treatment T₃, T₄ and T₂.

The treatment T₉ (50% RDF + 50% Vermicompost) showed earliness in flowering which took minimum number of days for initiation first flower (80.96 days) followed by the treatment T₆-50% RDF + 50% FYM (81.92 days) and T₁ 100% RDF (82.77 days). The treatment T₂-100% FYM recorded late initiation of flowering (87.25 days) as compared to other treatments.

3.2.2 Number of flowers per shoot

The data in respect of number of flowers per shoot as affected by different treatment are presented in Table 7.

The treatment T₉ (50% RDF + 50% Vermicompost) produced significant more number of flowers per shoot. It was at par with T₆, T₁, T₈ and T₅. The treatment T₉ produced significantly more number of flowers per shoot than T₁₀, T₇, T₃, T₄ and T₂.

The treatment T₉-50% RDF + 50% Vermicompost recorded more number of flowers per shoot (9.68) followed by treatment T6-50% RDF + 50% FYM (9.60). Least number of flower produced by treatment T₂- 100% FYM (8.86) and treatment T₄, T₃, T₇, and T₁₀ which were found at par to each other.

 Table 7: Effect of organic and inorganic fertilizers on number of flowers per shoot

Tr. No.	Treatment details	Treatments Number of flowers per shoot
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	9.58
T ₂	100% FYM	8.86
T ₃	100% Vermicompost	8.92
T_4	50% FYM + 50% Vermicompost	8.89
T ₅	75% RDF + 25% FYM	9.40
T ₆	50% RDF + 50% FYM	9.60
T7	25% RDF + 75% FYM	8.96
T ₈	75% RDF + 25% Vermicompost	9.46
T9	50% RDF + 50% Vermicompost	9.68
T ₁₀	25% RDF + 75% Vermicompost	8.99
	Mean	9.23
	SE <u>+</u>	0.16
	CD at 5%	0.49

3.2.3 Flower drop and fruit set

Data on per cent flower drop and fruit set are presented in Table 8.

All the organic and inorganic fertilizers reduced the flower drop and increased the fruit set. The flower drop was significantly reduced by treatment T₉ (50% RDF + 50% Vermicompost) which ultimately increased fruit set and was found significantly superior over T₄, T₃ and T₇ while treatments T₆, T₁, T₈, T₅ and T₁₀ were at par with T₉. The treatment (50% RDF + 50% Vermicompost) found 56.72 per cent flower drop and increased the 43.28 Percent fruit set.

Higher percentage of flower drop was found in treatment T_{2} -100% FYM (63.20 Percent), while T_4 , T_3 and T_7 were at par with it.

 Table 8: Effect of organic and inorganic fertilizers on percent flower drop and fruit set

Tr. No.	Treatment details	Flower drop (%)	Fruit set (%)
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	57.83	42.17
T_2	100% FYM	63.20	36.80
T ₃	100% Vermicompost	62.30	37.70
T ₄	50% FYM + 50% Vermicompost	62.70	37.30
T ₅	75% RDF + 25% FYM	59.43	40.57
T ₆	50% RDF + 50% FYM	56.87	43.13
T ₇	25% RDF + 75% FYM	61.20	38.80
T8	75% RDF + 25% Vermicompost	57.67	42.33
T9	50% RDF + 50% Vermicompost	56.72	43.28
T ₁₀	25% RDF + 75% Vermicompost	59.30	40.70
	Mean	59.72	40.28
	SE <u>+</u>	1.44	1.44
	CD at 5%	4.27	4.27

3.2.4 Number of fruits per shoot

The data pertaining to the mean number of fruits per shoot influenced by various treatments were presented in Table 9. Clearly indicated that significant treatment differences were existed in number of fruits per shoot amongst various treatments.

Table 9: Effect of organic and inorganic fertilizers on number of fruits per shoot

Tr. No.	Treatment details	Treatments Number of fruits/shoot
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	4.106
T_2	100% FYM	3.340
T3	100% Vermicompost	3.440
T ₄	50% FYM + 50% Vermicompost	3.395
T ₅	75% RDF + 25% FYM	3.880
T_6	50% RDF + 50% FYM	4.213
T7	25% RDF + 75% FYM	3.556
T8	75% RDF + 25% Vermicompost	4.069
T9	50% RDF + 50% Vermicompost	4.233
T10	25% RDF + 75% Vermicompost	3.878
	Mean	3.811
	SE <u>+</u>	0.187
	CD at 5%	0.558

The treatment T₉ (50% RDF + 50% Vermicompost) produced significantly more number of fruits per shoot than treatments T₇, T₃, T₄, and T₂. The treatment T₉ was found to be statistically at par with treatments T₆, T₁, T₈, T₅ and T₁₀. The treatment T₉ (50% RDF + 50% Vermicompost) produced

more number of fruits per shoot (4.233) followed by treatments T₆-50% RDF + 50% FYM (4.213), T₁100% RDF (4.106) and T₈-75% RDF+25% Vermicompost (4,069). Significantly less number of fruits per shoot was recorded in treatment T₂-100% FYM (3.340). The treatments T₄, T₃, and T₇ which were found at par to each other.

4.2.5 Fruit drop and fruit retention

It is evident from the data presented in Table 10 that the application of organic and inorganic fertilizers influenced the fruit drop and increases the fruit retention.

 Table 10: Effect of organic and inorganic fertilizers on percent fruit drop and fruit retention

Tr. No	Treatment details	Fruit Drop (%)	Fruit Retention (%)
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	84.09	15.91
T ₂	100% FYM	87.10	12.02
T3	100% Vermicompost	87.03	12.97
T ₄	50% FYM + 50% Vermicompost	87.98	12.90
T5	75% RDF + 25% FYM	84.96	15.04
T ₆	50% RDF + 50% FYM	83.03	16.97
T ₇	25% RDF + 75% FYM	86.12	13.88
T ₈	75% RDF + 25% Vermicompost	84.30	15.70
T9	50% RDF + 50% Vermicompost	82.83	17.17
T10	25% RDF + 75% Vermicompost	85.15	14.85
	Mean	85.26	14.74
	SE <u>+</u>	0.68	0.68
	CD at 5%	2.03	2.03

The Table 10 Revealed that the treatment T_2 (100% FYM) has highest fruit drop 87.98 percent and ultimately resulted poor fruit retention 12.02 percent. The treatments T_4 , T_3 and T_7 were at par with T_2 . The treatment T_9 (50% RDF + 50% Vermicompost) was found significantly superior over T_4 , T_3 , T_7 , T_{10} and T_5 . The treatment T_6 , T_1 and T_8 were at par with T_9 .The treatment T_9 (50% RDF + 50% Vermicompost) has recorded significantly reduced fruit drop (82.83 percent) and increased fruit retention (17.17 percent).

3.2.6 Days required for fruit maturity

Data on number of days required for fruit maturity are presented in Table 11. It is evident from the data that application of organic and inorganic fertilizers had significantly influenced on the number of days required for fruit maturity. The treatment T₉ (50% RDF + 50% Vermicompost) was found significantly superior over T₁, T₈, T₅, T₁₀, T₇, T₃, T₄, and T₂ and at par with T₆.

The treatment T₉ (50% RDF + 50% Vermicompost) recorded early maturity of fruits (248.32 days) followed by T₆-50% RDF + 50% FYM (249.08 days). The treatment T₂-100% FYM required (252.26 days) for fruit maturity. Treatments T₄, T₃, T₇ and T₁₀ were at par with treatment T₂.

 Table 11: Effect of organic and inorganic fertilizers on days required for fruit maturity

Tr. No.	Treatment details	Days required to fruit maturity
T_1	100% RDF viz., 1000:500:500 NPK (g/tree)	249.96
T ₂	100% FYM	252.26
T3	100% Vermicompost	251.66
T 4	50% FYM + 50% Vermicompost	251.89
T5	75% RDF + 25% FYM	250.64
T ₆	50% RDF + 50% FYM	249.08
T ₇	25% RDF + 75% FYM	251.00
T8	75% RDF + 25% Vermicompost	250.14
T9	50% RDF + 50% Vermicompost	248.32
T ₁₀	25% RDF + 75% Vermicompost	250.91
	Mean	250.59
	$SE\pm$	0.47
	CD at 5%	1.39

3.2.7 Number of fruits per tree

The data pertaining to the mean number of fruits per tree as influenced by various treatments were presented in Table 12 clearly indicated that significant treatment differences were existed in number of fruits per tree amongst various treatments.

Table 12: Effect of organic and inorganic fertilizers on total number of fruits per tree

Tr. No.	Treatment details	Total number of fruits per tree
T ₁	100% RDF viz., 1000:500:500 NPK (g/tree)	2341.70
T ₂	100% FYM	1965.70
T ₃	100% Vermicompost	2050.00
T_4	50% FYM + 50% Vermicompost	2028.70
T ₅	75% RDF + 25% FYM	2196.00
T ₆	50% RDF + 50% FYM	2447.00
T7	25% RDF + 75% FYM	2102.33
T8	75% RDF + 25% Vermicompost	2250.33
T9	50% RDF + 50% Vermicompost	2569.66
T10	25% RDF + 75% Vermicompost	2157.70
	Mean	2210.91
	SE <u>+</u>	93.11
	CD at 5%	276.21

The treatment T₉ (50% RDF + 50% Vermicompost) produced significantly more number of fruits per tree than treatments T₈, T₅, T₁₀, T₇, T₃, T₄ and T₂. The treatment T₉ was found to be statistically at par with treatments T₆ and T₁. The treatment T₉ (50% RDF + 50% Vermicompost) produced more number of fruits per tree (2569.66) followed by treatments T₆-50% RDF + 50% FYM and T₁ 100% RDF (2341.70). Less number

of fruits per tree was recorded in treatment T_2 -100% FYM (1965.70) and was at par with T_4 , T_3 , T_7 , T_{10} , and T_5 .

4. References

- 1. Anonymous. Area and production of sapota of India, 2009. www.icar.oru.in
- 2. Anonymous. Area and production of sapota of Maharashtra, 2009

- 3. Anonymous. Annual Rep, Dept. Agriculture Zanzibar, 1960, 44.
- 4. Anonymous. Fertilizer requirement for chiku tree. Recommendation Annual Research Report on fruit crops G. A. U. Navsari centre (kharif). 1984, 1-5.
- Blane D, Gilly G, Gras R. Comparative effect of organic manures and fertilizers on soil and vegetable yield in mediteranean climate. J Organic Manure Compets Rendus De-1 Academied agricultural de, France. 1989; 75(1):36-39.
- 6. Chaddha KL. Strategy for optimization of productivity and utilization of sapota (*Manilkara achras* (Mill.) Forseberg). Indian J. Horti. 1993; 49(1):1-17
- Durrani SM, Patil VK, Kadam BA. Effect of N, P, K, on growth, yield, fruit quality and leaf composition of Sapota. Indian J. Agric. Sci. 1982; 52(4):231-234.
- 8. Papenoe W. Manual of tropical and sub-tropical fruits. MacMillan Pub. Co. Inc., New York, 1974, 334-352.
- 9. Shanmugavelu KG, Shrinivasan. Proximate composition of fruits of sapota (*Achras zapota* Linn.) cultivars. *South Indian Hort.* 1973; 21:107.
- Singh HP. Current scenario of sapota growing in india. Paper presented at Nat. Sem. On optimization of productivity and utilization of sapota held at G.A.U, Navsari on, 1991.