International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2017; 5(6): 261-264 © 2017 IJCS Received: 14-09-2017 Accepted: 15-10-2017

Arun Kumar Singh

Department of Horticulture, SHUATS, Allahabad, Uttar Pradesh, India

Arghya Mani

Department of Post-harvest Technology, BCKV, Mohanpur, Haryana, India

Pradipta Dutta

Department of Vegetable Science, BCKV, Mohanpur, Haryana, India

Dipak Murmu

College of Agriculture, UBKV, Majhian, Balurghat, West Bengal, India Changes in lactic acid bacteria and total bacterial population in sodium substituted mix-vegetable pickle under ambient storage conditions

Arun Kumar Singh, Arghya Mani, Pradipta Dutta and Dipak Murmu

Abstract

An attempt has been made to prepare mix-vegetable pickle using different salt compositions of NaCl, KCl and CaCl₂ and evaluate the pickle samples for total bacterial population and Lactic acid bacteria populations. The purpose of salt mixture was to reduce Na consumption. After the preparation of pickle with varying content of salt, the effect of sodium replacement on microbial characteristic of pickle is to be determined. The results showed that the total bacterial population tends to increase with storage. Minimum bacterial population was observed at 0 day and maximum at 210th day of storage. Among different treatments, T₁ and T₂ showed maximum bacterial population of 165 and 161.67 respectively, whereas minimum bacterial colonies was observed in T₅ (149.67). It clearly indicates that CaCl₂ has a negative influence on bacterial population. The Lactic Acid Bacteria population shows a reverse trend and tends to decline with time. At 0 day of storage, T₁ shows highest population of Lactic acid bacteria (163.33) followed by T₂ (140.67), T₆ (134.33) and T₄ (135) whereas T₅ showed lowest LAB population (114). At 210th day, T₆ showed highest LAB population (50.67) followed by T₁ (47). T₅ supported lowest LAB population (25) followed by T₃ (30.33), T₂ (32) and T₄ (34). This clearly shows that NaCl and KCl have positive influence on LAB population.

Keywords: Lactic acid bacteria, salt substitution, bacterial population, LAB, mix-veg pickle, mix vegetable pickle

Introduction

Mix-veg pickle is one of the oldest preserved food products which is made from different vegetables. Mix-veg pickle is prepared by mixing different vegetables in desired proportion. The best thing with mix veg pickle is that it have nutritional benefits of all the vegetables. The term pickle is derived from the Dutch word 'Pekel", meaning brine ^[1]. Pickles are made through the natural fermentation of fruits and vegetables, and besides having nutritional value, pickles also act as a food accompaniments and palatability enhancers ^[2]. The process of pickling involves fermentation which is a primitive preservation method primarily used to enable the long-term storage of foods. Fermentation is a slow decomposition process of organic substances induced by microorganisms or enzymes that essentially convert carbohydrates to alcohols or organic acids ^[3]. When the fermentation term is used in case of fruits and vegetables, it is known as pickling. Out of the various approaches to fermentation, lactic acid fermentation, using natural micro flora or lactic acid bacterial (LAB) cultures, is employed throughout the world. Lactic acid (LA) fermentation of vegetables and fruits is a common practice to maintain and improve the nutritional and sensory features of food commodities ^[4, 5]. Salt is an indispensable part of our food habit. Salts not only improve the taste, but it also has a big role in human nutrition. NaCl is one of the most commonly employed agents for food conservation, allowing considerable increase in storage time by reducing water activity. Salt (sodium chloride) is the oldest food seasoning, which provides one of the important basic human tastes (saltiness) and preserves foods to extend the shelf life. Salt mainly consists of two elements: sodium and chloride. In the pickling industry, salt has historically been used for directing the fermentation of cucumbers, radishes, and carrots ^{[6, 7, 8,} ^{9]}. Common salt contains Na⁺ (Cation) and Cl⁻ (Anion). Na⁺ (Cation) is mainly responsible for the saltiness in the food. Sodium is a vital element required in small amounts by the human body, as it helps to control homeostasis and nerve impulses ^[10]. Sodium chloride is an essential in food as it improves the preservative, technological and sensory quality of food ^[11]. The extra intake of sodium present in salt might lead to conditions such as hypertension and high blood

Correspondence Arghya Mani Department of Post-harvest Technology, BCKV, Mohanpur, Haryana, India pressure. Approximately one quarter of the world's population suffers from this condition ^[12]. High sodium intake is increasing the risk of heart attack and high blood pressure ^[13]. Results for sodium intake and its effects on human blood pressure were derived from scientific research, animal studies and other human surveys ^[14, 15]. The mechanism of the effect of salt on blood pressure could be due to the rise in plasma sodium or to the increase in extracellular fluid volume. Higher dietary sodium intake is also related to bone disease. Pickling is done in presence of high concentration of salt solution in which the fruit pieces are dipped to ensure fermentation. Pickles contain salt at about 15-20% levels making it one of the high salt containing foods. The biggest drawback with pickles is the presence of high concentration of sodium ion (Na⁺) which may lead to adverse effects on human health and on food business. Many food products have been launched in its low salt version. The only form of salt that does not contain sodium is the low-sodium alternatives are the replacement with Potassium, Magnesium and Calcium ion instead of sodium. Eating excess salt raises the amount of sodium in our bloodstream and disturbs the delicate balance, reducing the ability of our kidneys to remove the water. The partial substitution of NaCl by KCl or CaCl₂ seems to provide an alternative for reducing sodium content. Increased potassium intake is reported to protect stroke, high blood pressure, heart rhythm problems, kidney failure, and even osteoporosis ^[16]. The additional use of KCl and CaCl₂ to partially replace NaCl could be helpful in reducing sodium content ^[17]. However, the use of KCl is mainly limited by its bitter and astringent taste ^[18]. Some people have reported a metallic after taste and therefore choose not to use KCl in food. But a mixed concentration of Na, K and Ca can help to reduce the total salt intake in our body. Therefore, the present work has been undertaken to investigate the possibility of replacing sodium chloride by potassium and Calcium salts and develop low sodium mix-veg pickle, to study the effect of partial NaCl substitution on processing parameters of pickles, to study the effect of NaCl substitution of sensory properties of pickle and to optimize salt mixture components for low sodium mix-vegetable pickles without affecting its physiochemical, biochemical, microbiological and sensory qualities.

2. Materials and Methods

2.1. Site of experiment: The present study was conducted in Post Graduate Laboratory, Department of Pomology and Post-Harvest Technology, Faculty of Horticulture and Central Instrumentation Centre Lab of Uttar Banga Krishi Viswavidyalaya, Pundibari, Coochbehar, West Bengal. The entire microbiological aspects of the experiment were performed in Post Graduate Lab, Department of Plant Pathology, UBKV.

2.2. Source of pickling materials: The vegetables like cauliflower, carrot, pea, beet were used for pickling. It was ensured that they were fresh, perfect maturity and were free from pests, diseases and blemishes. The chemical used in this experiment were of Laboratory grade.

2.3. Design for deciding the salt mixture for pickle preparation in the experiment:

The following design was used for deciding the salt mixture for pickle preparation in the experiment.

Design: Randomized Block Design (RBD)

Software used: SPSS

 Table 1: Treatment details showing different salt proportion used for curing purpose.

Treatment	NaCl (%)	KCl (%)	$CaCl_2(\%)$
T1	100	0	0
T2	50	50	0
T3	50	0	50
T4	0	100	0
T5	0	50	50
T6	50	25	25

2.4. Procedure for mixed vegetable pickle preparation: Pickles were prepared by using the standardized procedure. The prepared pickles were stored in glass jars which were cleaned properly and were sterilized in boiling water at room temperature. During the entire storage period it was ensured that the pickle was stored in aerated, dry and hygienic conditions.

2.5 Lactic Acid bacteria and Total Plate count upto 210th day of pickle storage

Microbiological analysis for the pickle was carried out by the method of Ranganna (1977) [19]. All the enumerations of Bacteria and Lactobacillus were carried out following serial dilution technique using specific media. Plates were incubated at 34±1 °C for 48 hours and colony forming units (CFU/g) were recorded. Observations for microbial count were made at prescribed intervals. The principle behind this is that the population of total bacterial population tends to decline with the decimal reduction in the concentration of the sample analyzed. Usually in a culture the microbial population was expected to be higher in 10^{-1} which tends to decline with 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} and 10^{-6} sample concentration. Higher the sample concentration higher would be the expected microbial concentration. As the colonies tends to coalesce or merge at higher concentration hence the readings for Total Plate Count and Total Bacterial Population Count has been studied at 10⁻⁵ concentration.

3. Results and Discussion

Table 2 shows the effect of different salt proportion on Lactic Acid Bacteria population in the mixed vegetable pickle sample which has been studied upto 210th day of preparation. Varying proportion of NaCl, KCl and CaCl₂ has been used for the curing purpose. At the 0 day of storage, T₁ shows highest population of Lactic acid bacteria (163.33) followed by T_2 (140.67), T_6 (134.33) and T_4 (135) whereas T_5 showed lowest LAB population (114). This can be attributed due to the fact that KCl and CaCl₂ have a negative response on any sort of microbial growth. At 30th day of storage, T₁ have highest LAB population (152.67) followed by T_2 (138.33), T_4 (134.67) and T_6 (133.33). T_5 have lowest LAB population (111.33) followed by T_3 (117). Similar trend in the LAB population dynamics has been observed at 60th, 90th, 120th, 150th and 180th day. At 210th day, T6 showed highest LAB population (52.00) followed by T₁ (48.00). T₅ supported lowest LAB population (26) followed by T_3 (31.67), T_2 (33.67) and T_4 (35). At 210th day of storage, LAB population using T₁ and T₆ salt proportion is at par. This clearly shows that NaCl and KCl have positive influence on LAB population whereas addition of CaCl₂ in salt mixture resulted in reduction in LAB population. This can be due to the unique ability of CaCl₂ to reduce the water activity of salt cured pieces.

Treatments	0 day	30th day	60th day	90th day	120th day	150th day	180th day	210th day
T_1	163.33	152.67	151.00	132.67	115.00	94.33	75.33	48.00
T_2	140.67	138.33	135.33	120.67	104.00	85.67	65.67	33.67
T3	118.33	117.00	112.33	98.67	85.33	78.00	60.00	31.67
T_4	135.00	134.67	131.67	103.67	90.33	80.00	65.67	35.00
T 5	114.00	111.33	110.00	95.67	82.33	73.67	57.33	26.00
T6	134.33	134.33	131.33	110.33	96.00	84.67	72.33	52.00
C.D.	16.274	14.77	12.97	12.54	11.46	7	4.6	4.02
SE(m)	5.099	4.63	4.06	3.93	3.59	2.19	1.44	1.26
C.V.	6.577	6.101	5.47	6.17	6.51	4.6	3.78	5.78

Table 2: Lactic Acid Bacteria population (log CFU) under ambient storage conditions.

Fig 1: Lactic Acid Bacteria population (log CFU) under ambient storage conditions.

Table 3 shows the effect of different salt proportions on the total bacterial population in mix-veg pickle sample at ambient storage upto 210th days. The total plate count showed significant variation of total bacterial population among different treatments. At 0 day, highest bacterial population was observed in T₁ (8.00) followed by T₂ (7.33), T₄ (6.33) and T₆ (5.67). Lowest bacterial population was observed in T₅ (4.67) followed by T₃ (5.33). T₁ was at par with T₂ which clearly indicates that the presence of higher amount of NaCl and no CaCl₂ provides suitable environment for bacteria to survive. Similar trend was observed at 30th, 60th, 90th, 120th, 150th and 180th day of treatment. At 210th day of treatment, the pickle prepared using salt composition T₁ showed

maximum bacterial colonies (165.00). High bacterial population was also observed in T_2 (161.67). Comparatively lower bacterial population was observed in T_5 (149.67) followed by T_6 (154). The reason behind lowest bacterial population in T_5 and lower bacterial population at T_6 can be attributed to the salt composition that was used during the curing procedure. T_5 salt mixture contain 50% CaCl₂ because of which the pickle prepared was having lowest bacterial count. CaCl₂ is known to be a good curing agent that can substantially reduce the available water in tissue of pickle pieces thus reducing the water activity (a_w) and resulting in lower total bacterial population.

Treatments	0 day	30th day	60th day	90th day	120th day	150th day	180th 1day	210th day
T1	8.00	19.00	42.00	71.67	101.33	121.00	147.67	165.00
T2	7.33	22.67	41.33	69.00	95.33	116.00	139.33	161.67
T3	5.33	21.00	38.00	65.33	85.67	107.67	130.00	154.00
T4	6.33	18.00	42.67	69.33	93.33	116.00	139.33	156.67
T5	4.67	23.00	35.67	63.33	80.67	106.67	127.00	149.67
T6	5.67	15.67	40.67	65.00	87.00	113.33	132.00	154.00
C.D.	1.64	2.27	2.64	1.67	3.87	3.52	3.26	1.99
SE(m)	0.51	0.71	0.83	0.52	1.21	1.10	1.02	0.62
C.V.	14.27	6.20	3.58	1.35	2.32	1.68	1.30	0.69

Table 3: Total Bacterial population (log CFU) under ambient storage conditions.

Fig 2: Total Bacterial population (log CFU) under ambient storage conditions.

Summary: The mix-veg pickle which was prepared after curing with different salt mixture was evaluated for total bacterial population and lactic acid bacteria (LAB) population. The results showed that the total bacterial population tends to increase with storage. Hence minimum bacterial population was observed at 0 day and maximum at 210^{th} day of storage. Among different treatments, T₁ and T₂ showed maximum bacterial population of 165 and 161.67 respectively, whereas minimum bacterial colonies was observed in T₅ (149.67). It clearly indicates that CaCl₂ has a negative influence on bacterial population. The Lactic Acid Bacteria population shows a reverse trend and tends to decline with time. At 0 day of storage, T_1 shows highest population of Lactic acid bacteria (163.33) followed by T₂ (140.67), T₆ (134.33) and T_4 (135) whereas T_5 showed lowest LAB population (114). At 210th day, T₆ showed highest LAB population (50.67) followed by T₁ (47). T₅ supported lowest LAB population (25) followed by T_3 (30.33), T_2 (32) and T_4 (34). This clearly shows that NaCl and KCl have positive influence on LAB population.

Conclusion

A conclusion can be drawn from this that the incorporation of $CaCl_2$ in the salt mixture which is to be used for curing purpose directly helps to suppress the bacterial population even at 210^{th} day (7 month) of storage. But it also affects the growth of desirable Lactic Acid Bacteria (LAB) in the pickle. Hence, a salt mixture with 50% NaCl, 25% KCl and 25% CaCl₂ can be used for pickle preparation. This salt mixture would not only help to minimize Sodium (Na) consumption but can also ensure a balanced microbial population throughout its ambient storage period to satisfactory level.

References

- 1. Wikipedia: online resource at http://en.wikipedia.org/wiki/Pickled_cucumber, accessed on 23/2/2017.
- 2. Savitri, Bhalla TC. Traditional foods and beverages of Himachal Pradesh. Indian Journal of Traditional Knowledge, 2007; 6(1):17-24.
- FAO. Fermented Fruits and Vegetables-A Global Perspective, FAO Agricultural Services Bulletin, Rome, Italy, 1998, 134.
- 4. Di Cagno R, Coda R, De Angelis M, Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 2013; 33(1):1-10.

- Karovicova J, Kohajdova Z. Lactic acid fermented vegetable juices, Horticultural Science, 2003; 30:152-158.
- Thompson RL, Fleming HP, Monroe RJ. Effects of storage conditions on firmness of brined cucumbers. Journal of Food Science, 1979; 44:843-846.
- Hudson JM, Buescher RW. Pectic substances and firmness of cucumber pickles as influenced by CaCl₂, NaCl and brine storage. Journal of Food Biochemistry, 1985; 9: 211-215.
- Fleming HP, Mcdonald LC, Mcfeeters RF, Thompson RL, Humphries EG. Fermentation of cucumbers without sodium chloride, Journal of food science. 1995; 60(2):312-319.
- 9. Mcfeeters RF, Fleming HP. Balancing macro mineral composition of fresh-pack cucumber pickles to improve nutritional quality and maintain flavor. Journal of Food Quality. 1997, 81-89.
- 10. Starr, McMillan. A book on 'Human Biology', 2006, 7.
- 11. Brady M. Sodium survey of the usage and functionality of salt as an ingredient in UK manufactured food products. British Food Journal. 2002; 104:84-125.
- World Health Organization. Collaboration to optimize dietary intakes of salt and iodine. 2011. Internet: http://www.who.int/bulletin/volumes^90/11-092080/en/ (accessed on: 17-04-2016)
- Doyle ME. Sodium reduction and its effects on food safety. Retrieved from University of Wisconsin-Madison, Food Research Institute. 2008. Website: http://fri.wisc.edu/docs/pdf/FRI_Brief_Sodium_Reductio n_11_08.pdf (accessed on: 19-04-2016).
- Kesteloot H, Jssens JV. Relationship of dietary sodium, potassium, calcium, and magnesium with blood pressure, hypertension: Dietary electrolytes and blood pressure. 1988; 12(6):594-599.
- 15. Meneton P, Jeunemaitre X, De Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiological Reviews, 2005; 85:679-715.
- 16. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003; 41:625-633.
- 17. Gillette M. Flavor effects of sodium chloride. Journal of Food Technology. 1985; 39:47-52.
- Reddy H, Chikkasubbanna V. The Asian Journal of Horticulture, December, 2009 to May, 2010; 4(2):271-274.
- 19. Ranganna S. Manual of Analysis of Fruits and Vegetable products. Tata McGraw-Hill. 1977.