Evaluation of phytochemical profile and antioxidant activity of some medicinal plants seed extracts obtained by traditional and modern (Green) extraction methods

Savan Donga and Sumitra Chanda

DOI: https://doi.org/10.22271/chemi.2020.v8.i4ao.10160

Abstract
The medicinal plants have been one of the major sources of medicines since the beginning of civilization. Herbal medicines are becoming more and more popular in recent years with their over increasing acceptability in both developing and developed countries. All parts of the plant leaf, stem, bark, root, flowers, fruits, seeds, peels, are therapeutically useful. But flowers, seeds and peels are less utilized. Seeds are generally thrown into environment and these waste disposal has become a critical global problem. But they have a rich source of many valuable bioactive compounds especially phenols and flavonoids because of which they can be used therapeutically. In the present work, 6 plant seeds viz. Annona squamosa L., Carica papaya Linn. (Un-ripe), Carica papaya Linn. (Ripe), Celiba pentandra L. Gaertn., Trachyspermum ammi L. and Trigonella foenum graecum L. were screened for their phytochemical profile and antioxidant efficacy using different extraction techniques. The seeds were extracted by different extraction methods viz. Traditional methods - decoction, maceration and Modern methods - microwave assisted extraction and ultrasonic assisted extraction. The phytochemicals or bioactive components evaluated were total phenols, phenolic acids, flavonoids, flavonols and proanthocyanidin content. In vitro antioxidant activity in terms of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, Superoxide anion free radical (O2-) scavenging activity, 2, 2'-azino-bis-(3-ethyl) benzo thiazoline-6-sulfonic acid (ABTS) radical cation scavenging activity and Ferric reducing antioxidant power (FRAP) was evaluated. All the extracts showed varied levels of phytochemical and antioxidant activity. But the best activity was shown by modern methods especially UAE. Thus, seeds can be profitably, beneficially employed as a rich source of bioactive compounds which can be effectively utilized as a source of natural antioxidant and reduce environmental pollution.

Keywords: Seed extracts, extraction techniques, phytochemicals, antioxidant activity, medicinal plants, traditional methods, modern methods

Introduction
Plants are essential part of human civilization. Medicinal plants are relied upon by over 80% of the world population for their necessary health care requirements mainly because they are comparatively cheap, widely easily available and they are free from many side effects associated with synthetic drugs. Diverse plants have been used as a source of novel drugs either in a pure compound form or their extract form and it provided unlimited opportunities to expand a diversity of new innovative drugs (Sen et al., 2010)\(^5\). In traditional Indian medicines, all parts of the plant viz. leaf, stem, bark, root, flowers, fruits, seeds, peels are recognized to have therapeutic properties and have been used to treat various diseases. Any part or rather all parts of the plant are therapeutically useful. However, it is always desirable and beneficial to make use of that part of the plant which is less utilized. For eg. flowers, seeds, peels, etc. All these parts are generally thrown into the environment and this agro or bio waste disposal is problematic economically and environmentally. Huge amount of solid wastes in the form of peels and seeds are generated by the fruit processing industries and these wastes if not disposed properly cause serious environmental problems such as water pollution, unpleasant odors, explosions and combustion, asphyxiation and greenhouse gas emissions.
emissions. But they have a great potential for reuse as antimicrobials, antioxidants, anti-cancer agents, etc. (Mirabella et al., 2014; Rakhotiya et al., 2014; Lee et al., 2020) [40, 44, 31].

Infectious diseases and cancer fall under some of the leading cause of deaths worldwide. Now-a-days people are suffering infections caused by multidrug resistant bacteria and fungi. Earlier antibiotic therapy came to the rescue but because of misuse and overuse, the antibiotics which were once working or no more able to tackle the microorganisms. Also newer ways of multi drug resistance mechanisms are evolving. Another dire problem is oxidative stress which is because of free radical generation. Free radicals are responsible for a number of diseases and disorders like cancer, atherosclerosis, cardiovascular disease, Parkinson’s, liver injury and rheumatoid arthritis (Alok et al., 2014) [3]. So in order to tackle these ever green problems, newer alternative drugs are required which will have better efficacy than existing drugs, with a novel mode of action.

Seeds can be used as dietary compounds for eg Momordica charantia, Cucumis sativus, Panica granatum etc. as spices for eg. Syzygium aromaticum, Piper nigrum, Elettaria cardamomum, and essential oils can be extracted from them for eg. Pongamia pinnata oil, Mentha piperita oil, Azadirachta indica oil. But some seeds are thrown away into the environment for eg. Tamarindus indica, Annona squamosa, Ziziphus jujube, Aegle marmelos, Manilkara hexandra, etc. Seeds have various nutritional compounds and phytoconstituents, they show different activities like Azadirachta indica leaves, stem and bark - antimicrobial activity (Ekasari et al., 2018) [22], Syzygium cumini leaf - antidiabetic, antioxidant and cytotoxic activities (Artanti et al., 2019) [37], Centella asiatica - anti-inflammatory activity (Baby et al., 2020) [9].

The phytochemical profile of the plant can give us an idea regarding its therapeutic efficacy. The next step is efficient extraction of the phytoconstituents present in them. There are many methods of extraction and they fall into two categories viz. conventional and non-conventional. The former are also known as traditional methods which include infusion, percolation, maceration, reflux extraction, Soxhlet, etc while the later are known as modern or green extraction methods which include high pressure liquid extraction, super critical CO$_2$ extraction, accelerated solvent extraction, microwave assisted extraction, ultra sonic assisted extraction, Pulsed electric field Extraction, Enzyme assisted extraction etc (Zhang et al., 2018) [46]. There are no universal criteria and it varies from plant to plant. Both methods have advantages and disadvantages but the main aim is to use best method of extraction for phenols and flavonoids which will extract completely the phytoconstituents without losing its efficacy and with no modification of its chemical nature.

In the present work, 6 plant seeds viz. Annona squamosa L., Carica papaya Linn. (Un-ripe), Carica papaya Linn. (Ripe), Ceiba pentandra L. Gaertn., Trachyspermum ammi L. and Trigonella foenum - graecum L. (Figure 1) were screened for their phytochemical profile and antioxidant efficacy using different extraction techniques. The extraction was done using two traditional methods viz. decoction (DCE) and maceration (MCE) and two modern methods viz. microwave assisted extraction (MAE) and ultrasonic assisted extraction (UAE). Annona squamosa L., belongs to Annonaceae family. The seed showed antioxidant and antimicrobial activity (Kothari and Seshadri, 2010 [30]; Gupta et al., 2019) [25]. Carica papaya Linn. belongs to Caricaceae family. The seed and latex showed molluscicidal activity (Jaiswal and Singh, 2008) [27] while peel and seed showed antioxidant activity (Ang et al., 2012) [6]. Ceiba pentandra L. Gaertn., belongs to Bombacaceae family. The seed showed antioxidant activity (Loganayaki et al., 2013) [34] while seed oil showed anti-inflammatory activity (Ravi Kiran et al., 2014) [48]. Trachyspermum ammi L. belongs to Apiaceae family. The seeds showed anticancer and anticanoidal activity (Ramya et al., 2017; Wahab et al., 2020) [46, 60]. Trigonella foenum - graecum L belongs to Fabaceae family. The seeds showed antioxidant and antimicrobial (Norziah et al., 2015) [42] and antiasthmatic activity (Jain et al., 2020) [26].

Fig 1: Photographs of screened plant seeds

http://www.chemijournal.com
Considering the above, the aim of the present work was evaluation of phytochemical profile and antioxidant activity of some medicinal plants seed extracts obtained by traditional and modern (green) extraction methods.

Materials and Methods

Plant collection

Trachyspermum ammi L. and Trigonella foenum - graecum L. were purchased from local market in Rajkot, Gujarat, India while fruits of Annona squamosa L., Carica papaya Linn. (Un-ripe), Carica papaya Linn. (Ripe), Ceiba pentandra L. Gaertn., were collected in Rajkot, Gujarat, India. Seeds were separated from fruit, washed with tap water followed by distilled water. The washed seeds were dried under shade. All seeds were crushed to fine powder and stored in air tight closed containers for further studies.

Extraction

The extraction was done using two traditional methods viz. decoction (DCE) and maceration (MCE) (Vongsak et al., 2013) [57] and two modern methods viz. microwave assisted extraction (MAE) (Dahmoune et al., 2015) [18] and ultrasonic assisted extraction (UAE) (Chen et al., 2007) [14]. The procedure followed is as described by Yoganandi et al., (2018) [63].

Quantitative phytochemical analysis and antioxidant activity

The total phenol content (TPC) was determined according to the modified method of Mc Donald et al. (2001) [53] by using Folin-Ciocalteu’s reagent method. The total phenol content was expressed in terms of gallic acid equivalent (GAE) (mg/g of extracted compound). The phenolic acid content (PAC) of different extracts of L. bipinnata leaf was determined according to the modified method of Tomczyk et al. (2010) [56] by using Arnow’s reagent method. The phenolic acid content was expressed in terms of caffeic acid equivalent (mg/g of extracted compound). The amount of total flavonoid content (TFC) was determined according to the modified method of Boutennou et al., (2017) [11] by using Aluminium chloride (AlCl₃) colorimetric method. The total flavonoid content was expressed in terms of quercetin equivalent (mg/g of extracted compound). The content of flavonols was determined by modified colorimetric method described by Boutennou et al., (2017) [11] and Abdel-Hameed (2009) [1]. The results are expressed in terms of quercetin equivalent (mg/g of extracted compound). The proanthocyanidin content was determined by the butanol-HCl assay as described by Zilic et al., (2011) [65]. The proanthocyanidins content was expressed in terms of leucocyanidin equivalent (mg/g of extracted compound). All samples were analyzed in triplicate and mean values are presented with ± S. E. M (Standard Error of Mean). The procedure followed is as described by Yoganandi et al., (2018) [63]. The antioxidant activity was evaluated by four different in vitro antioxidant assays viz. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity (Mc Cune and Johns, 2002) [126]. Superoxide anion free radical (O₂⁻) scavenging activity (Robak and Gryglewski, 1988) [50], 2, 2’-Azino-bis-(3-ethyl) benzothiazoline-6-sulfonic acid (ABTS) radical cation scavenging activity (Re et al., 1999) [49] and Ferric reducing antioxidant power (FRAP) (Benzie and Strain, 1996) [10]. The procedure followed is as described by Kaneria et al., (2018) [28].

Results and Discussion

Extractive yield

The extractive yield of all 6 plant seeds is given in Fig. 2. The extractive yield was different in different plant seeds; the traditional and modern techniques affected different plant seeds differently. It varied from plant to plant. The trend of extractive yield in different plant seeds was as follows: A. squamosa - UAE > DCE > MAE > MCE; C. papaya un-ripe - MAE > UAE > MCE > DCE; C. papaya ripe - MAE > UAE > DCE > MCE; C. pentandra - UAE = MCE = DCE > MAE; T. ammi - UAE > MAE > MCE > DCE; T. foenum – graecum - MAE > MCE > UAE > DCE. When extractive yield of plant seeds was compared, both the modern techniques MAE and UAE gave maximum extractive yield. In almost all the plant seeds, the traditional techniques DCE or MCE gave lowest extractive yield except in C. pentandra. It can be stated that extraction techniques definitely affected the extractive yield in different plant seeds. Maximum extractive yield in all the plant seeds was in the range 15.7% to 31.5% (Fig. 2). Highest extractive yield was in 9 min MAE extract of T. foenum – graecum (Fig.2E). Minimum extractive yield in all the plant seeds was in the range 3% to 17.4%. Lowest extractive yield was in MCE extract of C. papaya ripe seed (Fig. 2C). Maximum extractive yield in A. squamosa, was in 9 min ultra sonicated extracted (26.7%); in C. papaya un-ripe seed, it was in 9 min microwaves exposed extract (30.6%); in C. papaya ripe seed, it was in 6 min microwaves exposed extract (18.4%); in C. pentandra, it was in 6 min ultra sonicated extracted (15.7%); in T. ammi, it was in 6 min ultra sonicated extracted (28.4%) and in T. foenum – graecum, it was in 9 min microwaves exposed extract (31.5%). When all the 6 plant seeds were compared, maximum extractive yield was in T. foenum – graecum plant seed and minimum in C. papaya ripe seed (Figs. 2E and 2C).

It is very well reported in the literature that extraction method, extraction conditions and extraction solvents directly influence extractive yield and extractability of bioactive compounds or phytoconstituents (Taddeo et al., 2016 [54]; de Oliveira Reis et al., 2019) [20]. Pan et al., (2002) [43] showed that MAE was the best method for the extraction of tanninshones from Salvia miltiorrhiza. Dadi et al., (2019) [17] extracted phenols and flavonoids from Moringa stenopetala leaves using conventional technique maceration and modern technique UAE and reported that UAE extracts gave significantly higher yield than macerated extracts.

Quantitative Phytochemical Analysis

Total phenol content

The TPC of all 6 plant seeds is given in Fig. 3. The TPC varied with different seeds and with different extraction techniques. The trend of TPC in seeds was as follows: A. squamosa - MAE > DCE > MCE > UAE; C. papaya un-ripe - UAE > DCE > MAE > MCE; C. papaya ripe - MAE > UAE > MCE > DCE; T. ammi - UAE > MAE > MCE > DCE; C. pentandra - UAE > MCE > MAE > DCE. The TPC of plant seeds varied with different seeds and with different extraction techniques. The TPC of all 6 plant seeds is given in Fig. 3. The TPC of plant seeds was compared, maximum TPC was in modern extraction techniques UAE and MAE; in 4 plant seeds, UAE extracts had maximum TPC while in 2 plant seeds MAE extracts had maximum TPC. The extraction techniques definitely affected the TPC of all the plant seeds. Maximum TPC of all the plant seeds was in the range 23.3 mg/g to 51.6 mg/g (Fig. 3). Minimum TPC was in 9 min MAE extract of C. papaya ripe seed (Fig. 3D). Minimum TPC in all the plant seeds was in the range 11.5 mg/g to 32.2 mg/g. Minimum TPC was in the 9 min UAE

http://www.chemijournal.com
extract of *A. squamosa* plant seed (Fig. 3A). In *A. squamosa*, maximum TPC was in 3 min microwaves exposed extracted (23.3 mg/g); in *C. papaya* un-ripe seed, it was in 9 min ultra sonicated extracted (43.1 mg/g); in *C. papaya* ripe seed, it was in 9 min microwave extracted (51.6 mg/g); in *C. pentandra*, it was in 6 min ultra sonicated extracted (36.4 mg/g); in *T. ammi*, it was in 9 min ultra sonicated extracted (41.9 mg/g) and in *T. foenum – graecum*, it was in 3 min ultra sonicated extracted (30 mg/g). When all the 6 plant seeds were compared, maximum TPC was in *C. papaya* ripe seed and minimum *A. squamosa* plant seed (Figs. 3D and 3A).

Phenolic acid content (PAC)

The PAC of all 6 seeds is given in Fig. 4. PAC varied with different plant seeds and with different extraction techniques. The trend of PAC in different plant seeds was as follows: *A. squamosa* - UAE > MAE > DCE > MCE; *C. papaya* un-ripe - DCE > UAE = MAE > MCE; *C. papaya* ripe - MAE > UAE > DCE > MCE; *C. pentandra* - MAE > DCE > UAE = MCE; *T. ammi* - UAE > MCE > MAE > DCE; *T. foenum – graecum* - MAE > MCE > UAE = DCE. Like extractive yield and TPC, maximum PAC was in modern extraction techniques MAE and UAE. In 3 plant seeds MAE extracts had maximum PAC and in 2 plant seeds, UAE extracts had maximum PAC; while in remaining 1 plant seeds, DCE extracts had maximum PAC. The extraction techniques definitely affected the PAC of all the plant seeds. Maximum PAC of all the plant seeds was in the range 0.06 mg/g to 0.35 mg/g (Fig. 4). Maximum PAC was in 3 min UAE extract of *T. ammi* plant seed (Fig. 4E). Minimum PAC in all the plant seeds was in the range 0.01 mg/g to 0.18 mg/g. Minimum PAC was in the MCE extract of *A. squamosa* plant seed extract (Fig. 4A) and 9 min MAE extract of *T. foenum graecum* plant seed (Fig. 4F). In *A. squamosa*, maximum PAC was in 3 min ultra sonicated extracted (0.09 mg/g); in *C. papaya* un-ripe seed, it was in decoction extract (0.08 mg/g); in *C. papaya* ripe seed, it was in 9 min microwaves exposed extract (0.13 mg/g); in *C. pentandra*, it was in 6 min microwave exposed extract (0.16 mg/g); in *T. ammi*, it was in 3 min ultra sonicated extract (0.35 mg/g); in *T. foenum – graecum*, it was in 3 min microwaves exposed extract (0.06 mg/g). When all the 6 plant seeds were compared, maximum PAC was in *T. ammi* plant seed and minimum in *T. foenum – graecum* plant seed (Figs. 4E and 4F).

Total flavonoids content (TFC)

The TFC of all 6 plant seeds is given in Fig. 5. The TFC varied with plant seeds and with different extraction techniques. The trend of TFC in plant seeds was as follows: *A. squamosa* - UAE > MAE > DCE > MCE; *C. papaya* un-ripe - UAE > MAE > DCE > MCE; *C. papaya* ripe - DCE > MCE > UAE > MAE; *C. pentandra* - UAE > DCE > MAE > MCE; *T. ammi* - MAE > UAE > DCE > MCE; *T. foenum – graecum* - MAE > MCE > UAE = DCE. Like extractive yield, TPC and PAC, maximum TFC was in modern extraction techniques UAE and MAE; in 4 plant seeds UAE extracts had maximum TFC and in remaining 2 plant seeds, in 1 plant seed, MAE extracts had maximum TFC and in 1 plant seed, DCE extract had maximum TFC. The extraction techniques definitely affected the TFC of all the plant seeds. Maximum TFC of all the plant seeds was in the range 8.5 mg/g to 14.87 mg/g (Fig. 5). Maximum TFC was in DCE extract of *C. papaya* ripe seed (Fig. 5D). Minimum TFC in all the plant seeds was in the range 0 mg/g to 3.55 mg/g. Minimum TFC was in the MAE extracts of *C. papaya* ripe seed and *C. pentandra* seed (Figs. 5DC and 5B). In fact, in these 2 plant seed MAE extracts, TFC was not detected. In *A. squamosa*, maximum TFC was in 9 min ultra sonicated extracted (11.95 mg/g); in *C. papaya* un-ripe seed, it was in 6 min ultra sonicated extract (8.53 mg/g); in *C. papaya* ripe seed, it was in decoction extract (14.87 mg/g); in *C. pentandra*, it was in 9 min ultra sonicated extract (14.50 mg/g); in *T. ammi*, it was in 9 min microwaves exposed extract (9.20 mg/g) and in *T. foenum – graecum*, it was in 6 min ultra sonicated extract (9.43 mg/g). When all the 6 plant seeds were compared, maximum TFC was in DCE extract of *C. papaya* ripe seed (Fig. 5C) and minimum in MAE extracts of *C. papaya* ripe seed and *C. pentandra* seed (Figs. 5D and 5B).

Flavonol content (FC)

The flavonol content of all 6 plant seeds is given in Fig. 6. The FC varied with different plant seeds and with different extraction techniques. The trend of FC in different plant seeds was as follows: *A. squamosa* - UAE > MAE > DCE > MCE; *C. papaya* un-ripe - MAE > UAE > DCE > MCE; *C. papaya* ripe - DCE > MCE > UAE > MAE; *C. papenda* - MAE > DCE > MAE > MCE; *T. ammi* - MAE > UAE > DCE > MCE; *T. foenum – graecum* - MAE > UAE > DCE > MCE. Like extractive yield, TPC, PAC, TFC maximum FC was in modern extraction techniques MAE and UAE; in 3 plant seeds MAE extracts had maximum FC and in 1 plant seeds, UAE extracts had maximum FC; while in remaining 2 plant seeds, one in DCE extract and other one in MAE extracts. The extraction techniques definitely affected the FC of all the plant seeds. Maximum FC of all the plant seeds was in the range 12.5 mg/g to 43.18 mg/g (Fig. 6). Maximum FC was in DCE extract of *C. papaya* ripe plant seed (Fig. 6D). Minimum FC in all the plant seeds was in the range 0 mg/g to 15.36 mg/g. Minimum FC was in MAE and UAE extracts of *C. papaya* ripe seed (Fig. 6D) and MAE extracts of *C. pentandra* extract (Fig. 6B). In *A. squamosa*, maximum FC was in 9 min ultra sonicated extracted (34.27 mg/g); in *C. papaya* un-ripe seed, it was in 9 min microwaves exposed extract (24.45 mg/g); in *C. papaya* ripe seed, it was in DCE extract (43.18 mg/g); in *C. pentandra*, it was in MCE extract (12.50 mg/g); in *T. ammi*, it was in 9 min microwaves extract (27.18 mg/g) and in *T. foenum – graecum*, it was in 3 min microwaves exposed extract (27.77 mg/g). When all the 6 plant seeds were compared, maximum FC was in *C. papaya* ripe seed (Fig. 6D) and minimum FC was in MAE and UAE extracts of *C. papaya* ripe seed (Fig. 6D) and MAE extracts of *C. pentandra* extract (Fig. 6B).

Proanthocynidin content (PC)

The PC of all 6 plant seeds is given in Fig. 7. The PC varied with plant seeds and with different extraction techniques. The trend of PC in plant seeds was as follows: *A. squamosa* - DCE > UAE > MAE > MCE; *C. papaya* un-ripe - MAE > UAE > DCE > MCE; *C. papaya* ripe - DCE > MAE > MAE > MCE; *C. pentandra* - UAE > MAE > MAE > DCE; *T. ammi* - UAE > DCE > MAE > MCE; *T. foenum – graecum* - MAE > DCE > MAE > MCE. Like extractive yield, TPC, PAC, TFC, FC, maximum PC was in modern extraction techniques UAE and MAE; in 4 plant seeds, UAE extracts had maximum PC and in 1 plant seeds, MAE extracts had maximum PC while in remaining 1 plant seeds, DCE extract showed maximum PC. The extraction techniques definitely affected the PC of all the plant seeds. Maximum PC of all the plant seeds was in the range 0.9 mg/g to 1.7 mg/g Fig 7. Maximum PC was in 6 min UAE extract of *T. ammi* plant seed (Fig. 7E). Minimum PC in
all the plant seeds was in the range 0 mg/g to 0.7 mg/g. Minimum PC was in the MCE extract of A. squamosa plant seed (Fig. 7A). In A. squamosa, maximum PC was in DCE extract (1.64 mg/g); in C. papaya unripe seed, it was in 6 min microwaves exposed extract (1.41 mg/g); in C. papaya ripe seed, it was in 9 min ultra sonicated extract (1.30 mg/g); in C. pentandra, it was in 3 min ultra sonicated extract (0.99 mg/g); in T. ammi, it was in 6 min ultra sonicated extract (1.75 mg/g) and in T. foenum – graecum, it was in 9 min ultra sonicated extract (2.43 mg/g). When all the 6 plant seeds were compared, maximum PC was in 6 min UAE extract of T. ammi plant seed and minimum in A. squamosa plant seed (Figs. 7E and 7A).

Extraction methods greatly influence extraction yield of phenolic compounds and their antioxidant properties and has been studied widely (Das et al., 2019) [19]. Several researchers proved that modern methods UAE and MAE gave better yield and bioactive compounds from different plant materials. They also showed better antioxidant activity; though they are some reports where traditional methods were also good or no difference between traditional or modern methods. Rasheed et al. (2018) [47] evaluated different extraction methods (decocion, infusion, and maceration) and their effect on the bioactive compound profile of Hibiscus sabdariffa extracts; cold maceration was good for extracting anthocyanins and infusion method was good for recovering organic acids from Hibiscus sabdariffa. No difference in antioxidant activities of Propolis by conventional or modern methods (de Oliveira Reis et al., 2019) [20].

Anaya-Esparza et al., (2018) [5] obtained higher phenolic content by UAE than by stirring or thermal decocion from Justicia spicigera leaves. Yield, phenols, flavonoids and DPPH scavenging activity was more with non conventional method UAE than with conventional method MCE from peels of different citrus cultivars (Saini et al., 2019) [51]. Aguilar-Hernandez et al. (2019) [2] used UAE for extracting polyphenols from seed, peel, and columella and pulp from Annona maricata. UAE increases extraction efficiency of various phytoconstituents from different plant materials for eg. phenolic compounds, antioxidants, and anthocyanins from Vitis vinifera seeds (Ghafoor et al., 2009) [24], carnosic acid and rosmarinic acid from Rosmarinus officinalis (Ge et al., 2012) [23], procyanidins from the Perilla frutescens seed hull (Li et al., 2019) [32] anthocyanins from cranberries (Klavins et al., 2018) [29] flavonoids from Andrographis echioides (Ramasamy et al., 2019) [45].

MAE has also been successfully employed for extraction of resveratrol from Polygonum cuspidatum (Chen, 2013) [15], alkaloids from lotus plunmule (Xiong et al., 2016) [62], hemcelluloses from lignocellulosic materials (Mihiretu et al., 2017) [38], phenol, flavonoid and anthocyanins from Hibiscus sabdariffa calyx (Nguyen, 2020) [41], phenols and flavonoids from Phyllostachys pubescens shoots (Milani et al., 2020) [39] Li et al., 2017) [35] compared traditional methods (Soxhlet extraction and maceration extraction) and modern method MAE for extracting phenols and evaluating antioxidant activity of Gordonia axillaris fruit and once again confirmed that modern method MAE gave better results. Thus in accordance with reported literature, in the present work also, the modern methods MAE and UAE were better for extractive yield and extracting bioactive molecules like phenols, flavonoids, flavonols, phenolic acids and proanthocynidins. MAE and UAE are green extraction methods as compared to traditional techniques and provide shorter extraction time, enhanced extraction efficiency, increased reproducibility, less solvent and energy consumption, simple and prevention of thermo degradation of bioactive compounds (Da Porto & Natolini, 2018 [16]; Savie and Gajic, 2020) [52]. However, for every plant optimization of various parameters involved in the techniques (MAE and UAE) is needed and necessary (Aydar et al., 2017 [9], Li et al., 2017 [33], Ramasamy et al., 2019) [60].

Antioxidant activity

The antioxidant activity was evaluated by four different in vitro antioxidant assays. All the extracts, irrespective of the extraction methods showed very poor antioxidant activity. None of the extracts showed DPPH free radical scavenging activity. In almost all the extracts, IC50 values were more than 1000 µg/ml. SO activity also showed almost similar trend like that of DPPH. In C. papaya ripe and C. pentandra, very poor SO activity was found; their IC50 values were more than 1000 µg/ml. In A. squamosa, T. ammi and T. foenum – graecum few extracts showed little SO activity while most of the extracts displayed IC50 value more than 1000 µg/ml. All the 6 plant seed extracts showed ABTS cation radical scavenging except A. squamosa extracts, but to a varied level. In 2 plants, lowest IC50 value was in modern techniques while in 3 plants, it was in traditional techniques (Table 1) clearly indicated that there is no universal criteria and it varies from plant to plant. In C. papaya unripe seed extracts, the IC50 values ranged from 100.5 – 348 µg/ml and lowest was in maceration extract (100.5 µg/ml); in C. papaya ripe seed extracts, the IC50 values ranged from 256 - 402 µg/ml and lowest was in 9 min microwaves exposed extract (256 µg/ml); in C. pentandra seed extracts, the IC50 values ranged from 368 - 656 µg/ml and lowest was in 6 min ultra sonicated extract (368 µg/ml); in T. ammi seeds extracts, the IC50 values ranged from 70 – 190 µg/ml and lowest was in 9 min ultra sonicated extract (70 µg/ml); in T. foenum - graecum seed extracts, the IC50 values ranged from 201 - 450 µg/ml and lowest was in decoction extract (201 µg/ml).

The extraction techniques definitely affected the FRAP content of all the plants and there was no general trend; it varied from plant to plant. In A. squamosa maximum FRAP content was in 3 min microwaves exposed extract (0.65 M/g) while in C. papaya unripe seed it was in 9 min microwaves exposed extract (2.81 M/g); in C. papaya ripe seed, it was in 3 min ultra sonicated extract (3.58 M/g); in C. pentandra, it was in decoction extract (2.04 M/g); in T. ammi, it was in maceration extract (2.25 M/g); in T. foenum – graecum, it was in 3 min ultra sonicated extract (1.18 M/g). All the extracts showed FRAP content but amongst all the plants, maximum content was in C. papaya ripe seed extract and minimum was in A. squamosa seed extract. Overall content was in the order: C. papaya ripe seed > C. papaya ripe seed > T. ammi > C. pentandra > T. foenum – graecum > A. squamosa.

In the present study, weak antioxidant activity was found in all seed extracts extracted by different extraction techniques, which could be the result of the poor solubility of polyphenols and other bioactive molecules in the water extract (Bravo et al., 2007) [12]. Similar results i.e. poor antioxidant activities by water extracts in A. saligna flowers is reported by Al-Huqail et al., (2019) [3]. Tohma et al., (2016) [55] reported less antioxidant activity in water extract as compared to ethanol extract in Salvia species. However, in some plants water can be used as effective extraction solvent as demonstrated by Vu et al., (2019) [58]; they used water in MAE for extracting phenols and antioxidants from banana peels. It can be concluded that extraction method, extraction conditions and
extraction solvents directly influence extractive yield and extractability of bioactive compounds or phytoconstituents and antioxidant activities in medicinal plants.

Fig 2: Effect of extraction methods and time on extractive yield of some medicinal plant seeds
Fig 3: Effect of extraction methods and time on total phenol content of some medicinal plant seeds
Fig 4: Effect of extraction methods and time on phenolic acid content of some medicinal plant seeds
Fig 5: Effect of extraction methods and time on total flavonoid content of some medicinal plant seeds
Fig 6: Effect of extraction methods and time on flavonol content of some medicinal plant seeds
Fig 7: Effect of extraction methods and time on Proanthocyanidin content of some medicinal plant seeds
<table>
<thead>
<tr>
<th>Plants Name</th>
<th>Seed extracts</th>
<th>IC₅₀ Values(µg/ml)</th>
<th>FRAP (M/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DPPH</td>
<td>SO</td>
</tr>
<tr>
<td>A. squamosa</td>
<td>DCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MCE</td>
<td>>1000</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>MAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 9 min</td>
<td>>1000</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>UAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>C. papaya (Un-ripe)</td>
<td>DCE</td>
<td>>1000</td>
<td>544</td>
</tr>
<tr>
<td></td>
<td>MCE</td>
<td>456</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>MAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>C. papaya (Ripe)</td>
<td>DCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>C. pentandra</td>
<td>DCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>T. ammi</td>
<td>DCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MCE</td>
<td>944</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 6 min</td>
<td>>1000</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>UAE 9 min</td>
<td>>1000</td>
<td>672</td>
</tr>
<tr>
<td>T. foenum – graecum</td>
<td>DCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MCE</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 3 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 6 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>MAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td></td>
<td>UAE 3 min</td>
<td>>1000</td>
<td>626</td>
</tr>
<tr>
<td></td>
<td>UAE 6 min</td>
<td>>1000</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>UAE 9 min</td>
<td>>1000</td>
<td>>1000</td>
</tr>
</tbody>
</table>
Conclusion: On the basis of the obtained results, it can be concluded that fruit seeds are not waste to be discarded into the environment but they are of some worth and can be therapeutically exploited. They are enriched with phytoconstituents like phenols and flavonoids and hence can be used as a natural source of antioxidants. However, their extractability depends on extraction techniques and extraction solvents and in the present work, modern extraction techniques especially UAE proved best. Antioxidant activity was poor being water extracts and hence extraction by using other organic solvents is desirable. Work in this direction is in progress.

Acknowledgement
Department of Biosciences (UGC-CAS), Saurashtra University is gratefully acknowledged for excellent research facilities.

References

17. Dadi DW, Emire SA, Hagos AD, Eun JB. Effect of ultrasound-assisted extraction of Cassia spectabilis leaves on bioactive compounds and their antioxidant activity. Food Technology and Biotechnology. 2019; 57(1): 77-86.

https://doi.org/10.1371/journal.pone.0219063.

38. Mihiretu GT, Brodin M, Chimphango AF, Oyaas K, Hoff BH. Jorgens JF. Single-step microwave-assisted hot water extraction of hemicelluloses from selected

52. Savic IM, Gagic IM. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.). Journal of Food Science and Technology. 2020; 57(8):2809-2818.

58. Vu HT, Scarlett CJ, Vuong QV. Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. Journal of Food Science and Technology. 2019; 56(3): 1360-1370.

59. Vu HT, Scarlett CJ, Vuong QV. Optimization of ultrasound-assisted extraction conditions for recovery of phenolic compounds and antioxidant capacity from banana (Musa cavendish) peel. Journal of Food Processing and Preservation. 2017; 41:e13148.

