International Journal of Chemical Studies

P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2018; 6(5): 598-602 © 2018 IJCS Received: 19-07-2018 Accepted: 23-08-2018

Venkatesh B

Department of Seed Science and Technology, University of Agricultural Sciences, Raichur, Karnataka, India

Basave Gowda

Special Officer (Seeds), Seed Unit, University of Agricultural Sciences, Raichur, Karnataka, India

SN Vasudevan

Associate Director of Agriculture, Zonal Agriculture Research Station, VC, Farm, Mandya, GKVK, Bangalore, Karnataka, India

SR Doddagoudar

Assistant Professor, Department of Seed Science and Technology, University of Agricultural Sciences, Raichur, Karnataka, India

Gururaj Sunkad

Professor and Head, Department of Plant Pathology, University of Agricultural Sciences, Raichur, Karnataka, India

CR Konda

Professor and Head, Agriculture Research Station, Bidar, University of Agricultural Sciences, Raichur, Karnataka, India

Correspondence Venkatesh B Department of Seed Science and Technology, University of Agricultural Sciences, Raichur, Karnataka, India

Effect of seed coating with fungicides along with polymer on seed storability of soybean (*Glycine max* L. Merril)

Venkatesh B, Basave Gowda, SN Vasudevan, SR Doddagoudar, Gururaj Sunkad and CR Konda

Abstract

The present storage experiment was conducted at Seed Unit, University of Agricultural Sciences Raichur, Karnataka during 2016-2017 on soybean cv. JS 335 seeds were treated with different fungicides along with polymer (5 ml kg⁻¹) and were subjected for seed quality in order to know the influence of fungicides along with polymer on quality parameters were evaluated from 0 to 9 months of storage under laboratory condition, combi-fungicides carbendazim 25% + mancozeb 75% @ 3 g per kg of seed was recorded significantly higher seed quality parameters *viz.*, germination (69.67%), peak value of germination (22.36), root length (12.03 cm), shoot length (9.83 cm), seedling length (21.86 cm), seedling dry weight (111.1 mg), seedling vigour index-I (1524) and seedling vigour index-II (7747) at the end of nine months of storage period as compared to control.

Keywords: soybean, fungicides, polymer, seed quality, storage period

Introduction

Planting high quality seed is important to an efficient soybean production system. Early planting, reduced seeding rates, and drill planting all require high quality, vigorous seed to obtain optimum stands and yields. Strong seedlings grow faster than less vigorous ones, are more tolerant to adverse conditions in the seedbed, and are better able to resist diseases. Diseases affecting seed quality and yield differ in severity among cultivars, years, and locations, but the pathogens responsible are well established in most production areas. Soybean seed produced in warm, wet seasons or where rain has delayed the harvest is often of poor quality. Using fungicide seed treatments provides cheap insurance against seed borne and soil borne seed rots and against seedling blights. Although fungicide seed treatments generally increase the stand, such treatments do not always insure higher yields.

Seed ageing and deterioration of seed are irreversible, inexorable and inevitable process, but the rate of seed deterioration could be slowed down either by storing the seeds under controlled condition or by imposing seed treatment with polymer coating along with seed treatment chemicals (Duan and Burris, 1997)^[4]. As the controlled condition involves the huge cost, the seed treatment remains the best alternative approach to maintain the seed quality.

However, the untreated seed germination percentage was decreased drastically when storage period increases compared to the treatments receiving fungicidal treatment with polymer coating at higher doses. This indicates that, along with the fungicides, polymer coating is also helpful in maintaining the seed quality. The rate of reduction in germination percentage from the beginning of the storage period till the end of storage was slower in seeds treated with fungicides and polymer coated seeds compared to untreated seeds. These results are in conformity with the findings of Taylor *et al.* (2001) ^[17], Vanangamudi *et al.* (2003) ^[18] and Larissa *et al.* (2004) ^[10] in onion, maize and bean, respectively.

Soybean seeds lose viability within 3-4 months if the storage arrangement and the condition of seed are not proper (Sajad, 1980) ^[12]. Types of container also regulate temperature, relative humidity and seed moisture contents. High temperature, relative humidity and moisture in the storage environment appear to be main factor involved in deterioration of seed quality. Maintenance of seed quality during storage period is important not only for crop production in the following year but also for the maintenance seeds because of their constant threat and of genetic erosion. In view of the above

facts, the present research work was undertaken to evaluate the effect of different coating materials and storage container on germination and seedling vigour of stored soybean seed.

Material and Methods

The certified seeds of soybean variety JS 335 produced during kharif 2016-17 from the Seed Unit, Bidar. University of Agricultural Sciences, Raichur, were size graded and utilised for the study. The soybean seed coating with polymer at 5 ml per kg of seed and proper seed coating in a rotary seed treater. Almost care was taken during treatment to have uniformity in coating and the seeds were air dried under shade to bring back to its original moisture content. Then different fungicide treatments viz., T₀: Control, T₁: Polymer, T₂: T₁ + thiram @ 3 g/kg, T₃: T₁+ carboxine @ 2 g/kg, T₄: T₁ + carbendazim 2 g/kg, T₅: T₁ + carbendazim 25% + mancozeb 75%@ 3 g/kg, T₆: T₁ + thiram 37.5% + carboxin 37.5% @ 3 g/kg. The experiment was designed as completely randomized design concept with three replications. The fungicides along with polymer coated seeds were tested for germination percentage, root and shoot length, dry matter production, vigour index. The seed germination test was conducted as per ISTA (Anon., 2014)^[2] using between paper method, the number of normal seedlings counted at the end of eight day and expressed as seed germination in percentage (%) and the peak value of germination was taken from numbers of seeds germinated were recorded on daily basis up to the day of final count (8th day). The peak value is the cumulative germination percentage for each unit on its peak day divided by the number of days to reach that percentage. It was calculated by the formula suggested by Gairola et al. (2011)^[5].

Highest number of seeds germinated

Peak value of germination =

Number of days

The vigour index I was calculated using the formula VI I = (Mean root length + Mean shoot length) (cm) x Germination (%) as suggested by Abdul-Baki and Anderson (1973)^[1]. The vigour index II was calculated using the formula VI II = Seedling dry weight (mg) x Germination (%). The data collected from the experiments were analyzed statistically by the procedure prescribed by Sundararaj *et al.* (1972). Whenever 'F' test was found significant, the critical difference (CD) values were calculated and treatment mean were compared at one per cent for lab experiment.

Result and Discussion

Seed senescence or deterioration is an irreversible and inexorable/ unavoidable process. However, the rate of seed deterioration could be slowed down either by storing the seeds under controlled conditions or by imposing certain treatments with either chemicals or any other protectants. Seed coating with polymer is one such pre-storage treatment that can be used either singly or in combination with other fungicides, pesticides to protect the seeds against pest and diseases. Duan and Burris (1997)^[4] explained the possibilities of using polymers along with other chemicals to maintain the keeping quality of the seeds. The rapid deterioration of stored seed is a serious problem, particularly in the high temperature and relative humidity prevails and associated with accelerated ageing phenomenon. Since, the controlled condition involves huge cost; the polymer seed coating could be one of the best alternative approaches to maintain seed quality during storage.

In the present investigation, irrespective of the treatments, the seed quality parameters declined progressively with the increase in storage period. The germination percentage, peak value of germination, root length (cm), shoot length (cm), seedling length (cm), seedling dry weight (mg), seedling vigour index-I and seedling vigour index-II at the beginning of the storage period were 91.14 per cent, 39.60, 22.97 cm, 18.36 cm, 41.34 cm, 118.9 mg, 3777 and 10865, which declined to 64.71 per cent, 19.00, 9.68 cm, 7.67 cm, 17.34 cm, 93.1 mg, 1129 and 6050, respectively at the end of 9th month of storage (Table 1-7). This decrease in seed quality during storage may be attributed to ageing effects, leading to depletion of food reserves and decline in synthetic activity of the embryo apart from death of seeds because of fungal invasion (Gupta et al., 1993) [7]. However, the average germination was above the minimum seed certification standards (70.00 %) even after six months of storage. The polymer coat on seed acts as a physical barrier that has been reported to reduce leaching of inhibitors from the seed coverings and may restrict oxygen diffusion to the embryo (Duan and Burris, 1997)^[4] and also Struve and Hopper (1996) ^[14] reported in cotton seeds coated with polymer recorded slower imbibitional rate, reduced the imbibitional damage, lowered the electrical conductivity values and improved the germination. These findings are in agreement with results obtained by Hunje et al. (1990)^[8] in cowpea. The film formed around seed act as a physical barrier, which has been reported to reduce leaching of inhibitors from the seed coverings and may restrict oxygen diffusion to the embryo (Duan and Burris, 1997)^[4]. The higher germination percentage can be seen in polymer coated seeds, it is due to increase in the rate of imbibition where the fine particles in the coating act as moisture attracting material to improve germination. Increase in storage period decreases in vigour index, seedling dry weight, root and shoot length was noticed irrespective of seed treatments.

The rate of reduction in germination percentage from the beginning of the storage period till the end (9th month) of storage was slower in seeds treated with fungicide and polymer, compared to untreated seed. The rate of reduction in germination percentage during storage in T₅, (carbendazim 25% + mancozeb 75%) @ 3 g per kg of seed and T₀ (control) was 94.33 and 88.67 per cent from initial to 69.67 and 62.00 per cent at the end of 9th month of storage period respectively. These results are in conformity with the earlier findings of Taylor *et al.* (2001) ^[16] in onion, Vanangamudi *et al.* (2003) ^[18] in maize and Larissa *et al.* (2004) ^[10] in bean. This increase in seed germination might be due to reduced incidence of seed-borne fungal pathogens compared to control. Similar results were also reported by Ashwini and Giri (2014) ^[3] in green gram.

The other quality parameters *viz.*, peak value of germination, root length (cm), shoot length (cm), seedling length (cm), dry weight of seedlings (mg) and seedling vigour index recorded at the initial storage was 43.50, 25.05 cm, 21.00 cm, 46.05 cm, 134.1 mg, 4349 and 12659 which at the end of 9th month of storage was 22.36, 12.03 cm, 9.83 cm, 21.86 cm, 111.1 mg, 1524 and 7747 in T₅, (carbendazim 25% + mancozeb 75%) @ 3 g per kg of seed whereas, untreated seeds (T₀) recorded 16.76, 7.42 cm, 5.70 cm, 13.12 cm, 77.4 mg, 814 and 4803, respectively at the end of storage period. The polymer keeps the seed intact, as it acts as binding material and covers the minor cracks and aberrations on the seed coat thus blocking the fungal invasion. It may also act as a physical barrier which reduces leaching of inhibitors from seed coverings and restrict

oxygen movement and thus reducing the respiration of embryo thereby reducing the ageing effect on seed (Duan and Burris, 1997)^[4]. The polymer also prevents moisture content fluctuations during storage (West *et al.*, 1985)^[19]. The fungicide protected by polymer enhances their efficiency till the end of storage period. It forms a flexible film that adheres and protects the fungicides preventing dusting off and loss of fungicide during storage. It was due to higher percentage and better germination of seedlings in seeds coated with polymer, fungicide and insecticide as this protects fungi invasion and insect attack thereby good and better germination and subsequent higher root and shoot length. Similar results were also reported by Geetharani *et al.* (2006)^[6] in chilli and Kunkur *et al.* (2007)^[9] in cotton due to elongation of shoot due to proper supply of water and nutrients which were enabled by the polymers. This, in the present study is reflected by reducing the seed infection by pathogen.

The enhanced germination and quality parameters with treated seeds with fungicides and polymer coating is because of the combined favourable effects of these two chemicals. The fungicides protected the seed from deterioration by reducing the fungal invasion. The effectiveness of fungicides and polymer coating may be due to the compatibility and synergetic effect, which reduced the growth of the pathogen and favoured germination and other parameters (Omvir Singh *et al.*, 1973)^[11] in soybean, (Sindhan and Bose, 1981)^[13] in french bean and (Sundaresh *et al.* 1987)^[16] in soybean.

Table 1: Effect of seed treatment with different fungicides along with polymer on seed germination (%) during storage of soybean cv. JS 335

Tuestments		Months of storage													
1 reatments	Initial	1	2	3	4	5	6	7	8	9					
т	88.67	88.33	86.00	84.50	81.33	78.00	75.17	71.70	66.70	62.00					
10	(59.91)	(59.70)	(58.35)	(57.53)	(55.87)	(54.21)	(52.86)	(51.24)	(48.96)	(46.85)					
T_1	89.67	89.33	87.33	86.00	81.67	78.33	75.67	72.53	68.20	63.00					
	(60.53)	(60.32)	(59.12)	(58.35)	(56.04)	(54.38)	(53.09)	(51.62)	(49.64)	(47.30)					
т	90.00	89.33	87.33	86.33	83.00	78.67	76.50	73.07	68.67	64.00					
12	(60.74)	(60.32)	(59.12)	(58.54)	(56.73)	(54.54)	(53.49)	(51.87)	(49.85)	(47.75)					
T ₃	90.67	89.67	88.33	86.67	83.67	80.67	77.67	74.33	69.67	64.33					
	(61.17)	(60.53)	(59.71)	(58.73)	(57.08)	(55.53)	(54.05)	(52.46)	(50.31)	(47.90)					
т	91.33	90.33	88.67	86.67	84.67	82.33	78.00	75.37	70.67	64.67					
14	(61.62)	(60.95)	(59.91)	(58.73)	(57.62)	(56.38)	(54.21)	(52.95)	(50.76)	(48.05)					
т.	94.33	93.67	92.00	90.00	88.00	86.67	82.33	79.37	74.33	69.67					
15	(63.91)	(63.35)	(62.09)	(60.74)	(59.51)	(58.73)	(56.38)	(54.88)	(52.46)	(50.31)					
т	93.33	91.67	89.00	87.50	85.67	84.00	80.50	77.00	70.67	65.33					
16	(63.08)	(61.85)	(60.11)	(59.21)	(58.17)	(57.26)	(55.45)	(53.73)	(50.76)	(48.35)					
Maan	91.14	90.33	88.38	86.81	84.00	81.24	77.98	74.77	69.84	64.71					
Mean	(61.57)	(61.00)	(59.77)	(58.83)	(57.29)	(55.86)	(54.22)	(52.68)	(50.39)	(48.07)					
S.Em±	0.16	0.13	0.10	0.07	0.08	0.09	0.06	0.05	0.03	0.03					
CD at 1%	0.69	0.55	0.43	0.31	0.32	0.37	0.23	0.20	0.15	0.12					

Values in parenthesis are arc sine transformed value T₀: Control, T₁: Polymer @ 5 ml,

T₅: T₁+ (carbendazim + mancozeb) @ 3 g/kg,

Table 2: Effect of seed treatment with different fungicides along with polymer on peak value of germination during storage of soybean cv. JS 335

Tuestments		Months of storage												
Treatments	Initial	1	2	3	4	5	6	7	8	9				
T ₀	36.50	34.83	34.50	33.07	32.83	30.17	28.50	26.09	22.26	16.76				
T1	37.83	36.17	36.00	34.67	34.33	31.33	29.67	27.00	23.00	17.33				
T ₂	38.17	36.50	36.17	35.37	35.00	31.83	30.17	26.63	22.29	16.29				
T3	38.83	37.17	37.00	35.90	35.50	32.67	31.00	28.26	24.43	18.93				
T_4	40.50	39.15	38.16	37.25	36.70	33.80	32.18	29.39	25.69	20.37				
T ₅	43.50	42.97	42.03	40.67	39.83	37.83	36.17	33.03	28.53	22.36				
T ₆	41.83	40.57	39.33	38.38	37.83	34.83	33.17	30.29	26.45	20.95				
Mean	39.60	38.19	37.60	36.47	36.00	33.21	31.55	28.67	24.66	19.00				
S.Em±	0.29	0.29	0.28	0.27	0.26	0.24	0.23	0.21	0.18	0.14				
CD at 1%	1.22	1.20	1.16	1.12	1.11	1.02	0.97	0.88	0.75	0.57				
T ₀ : Control,	T ₁ : Poly	mer @ 5 ml,	Г	$T_2: T_1 + thiran$	n @ 3 g/kg,	T ₃ : T ₁ -	T_3 : T_1 + carboxin @ 2 g/kg, T_4 : T_1 + carbendazim @ 2 g/kg							

T₀: Control, T₁: Polymer @ 5 ml, T₅: T₁+ (carbendazim + mancozeb) @ 3 g/kg, $\begin{array}{ll} T_2: \ T_1 + \ thiram @ 3 \ g/kg, & T_3: \ T_1 + \ carboxin \\ T_6: \ T_1 + \ (thiram + \ carboxin) \ @ 3 \ g/kg \ of \ seed. \end{array}$

Table 3: Effect of seed treatment with different fungicides along with polymer on root length (cm) during storage of soybean cv. JS 335

T	Months of storage													
1 reatments	Initial	1	2	3	4	5	6	7	8	9				
T_0	21.00	20.28	19.78	18.47	16.47	14.92	13.92	11.92	9.67	7.42				
T_1	22.18	21.50	21.00	19.58	17.65	16.17	14.80	13.30	11.05	8.61				
T_2	22.50	22.01	21.51	20.33	19.58	19.28	16.28	15.03	12.78	9.25				
T3	22.67	22.22	21.72	20.35	19.70	19.58	16.35	15.10	12.85	9.74				
T_4	23.09	22.92	22.42	21.57	20.57	19.70	17.67	16.02	13.77	10.20				
T ₅	25.05	24.77	24.27	23.38	22.12	21.20	19.95	18.40	16.15	12.03				
T_6	24.32	23.85	23.45	22.42	21.25	20.33	18.54	16.75	14.50	10.50				
Mean	22.97	22.51	22.02	20.87	19.62	18.74	16.79	15.22	12.97	9.68				
S.Em±	0.17	0.16	0.17	0.15	0.14	0.14	0.12	0.11	0.10	0.07				
CD at 1%	0.71	0.69	0.71	0.64	0.60	0.58	0.51	0.47	0.41	0.30				

T₀: Control, T₁: Polymer @ 5 ml, T₅: T₁+ (carbendazim + mancozeb) @ 3 g/kg,

T₂: T₁+ thiram @ 3 g/kg, T₃: T₁+ carboxin @ 2 g/kg, T₄: T₁+ carbendazim @ 2 g/kg, T₆: T₁+ (thiram + carboxin) @ 3 g/kg of seed.

Table 3: Effect of seed treatment with different fungicides along with polymer on shoot length (cm) during storage of soybean cv. JS 335

Truestruesta		Months of storage													
Ireatments	Initial	1	2	3	4	5	6	7	8	9					
T ₀	16.00	15.20	14.83	13.50	12.17	10.83	9.53	8.70	7.70	5.70					
T 1	16.83	16.03	15.67	14.33	13.00	11.67	10.45	9.62	8.62	6.04					
T ₂	17.17	16.37	16.00	14.67	13.33	12.00	11.48	10.15	8.98	6.65					
T3	17.83	17.03	16.67	15.33	14.00	12.67	12.07	10.74	9.57	7.24					
T_4	19.32	18.43	18.27	17.22	16.27	14.33	12.54	11.54	10.70	9.04					
T5	21.00	20.40	20.17	19.27	18.63	17.17	15.06	13.93	12.56	9.83					
T ₆	20.39	19.52	19.24	18.19	17.47	15.49	13.07	12.07	11.10	9.16					
Mean	18.36	17.57	17.26	16.07	14.98	13.45	12.03	10.96	9.89	7.67					
S.Em±	0.14	0.10	0.12	0.12	0.11	0.10	0.09	0.08	0.07	0.06					
CD at 1%	0.59	0.43	0.53	0.49	0.46	0.42	0.37	0.34	0.31	0.24					
T ₀ : Control,	T ₁ : Polymer @	5 ml,	T_2 : T_1 + this	iram @ 3 g/k	tg, T ₃ : T	' ₁ + carboxin	@ 2 g/kg,	T ₄ : T ₁ + carbendazim @ 2 g/kg,							

T₀: Control. T_1 : Polymer @ 5 ml, T₅: T₁+ (carbendazim + mancozeb) @ 3 g/kg, T₆: T₁+ (thiram + carboxin) @ 3 g/kg of seed.

 T_2 : T_1 + thiram @ 3 g/kg,

Table 4: Effect of seed treatment with different fungicides along with polymer on seedling length (cm) during storage of soybean cv. JS 335

Treatments		Months of storage												
Treatments	Initial	1	2	3	4	5	6	7	8	9				
T ₀	37.00	35.48	34.61	31.97	28.64	25.75	23.45	20.62	17.37	13.12				
T 1	39.01	37.54	36.67	33.91	30.65	27.84	25.25	22.92	19.67	14.65				
T2	39.67	38.38	37.51	35.00	32.91	31.28	27.76	25.18	21.76	15.90				
T3	40.50	39.25	38.39	35.68	33.70	32.25	28.42	25.84	22.42	16.98				
T 4	42.41	41.35	40.69	38.79	36.84	34.03	30.21	27.56	24.47	19.23				
T5	46.05	45.17	44.44	42.65	40.75	38.37	35.01	32.33	28.71	21.86				
T ₆	44.71	43.37	42.69	40.61	38.72	35.82	31.61	28.82	25.60	19.66				
Mean	41.34	40.08	39.28	36.94	34.60	32.19	28.82	26.18	22.86	17.34				
S.Em±	0.28	0.21	0.22	0.27	0.25	0.23	0.21	0.19	0.17	0.13				
CD at 1%	1.19	0.89	0.94	1.13	1.06	0.99	0.89	0.81	0.71	0.54				
To: Control	T ₁ : Polymer @	5 ml	$T_2 \cdot T_1 + th$	niram @ 3 g	/kg Τ2·'	T_{1+} carboxi	n @ 2 g/kg	T_4 : T_1 + cat	+ carbendazim @ 2 g/kg					

T₅: T₁+ (carbendazim + mancozeb) @ 3 g/kg,

Table 5: Effect of seed treatment with different fungicides along with polymer on seedling dry weight (mg) during storage of soybean cv. JS 335

Treatmonte		Months of storage													
Treatments	Initial	1	2	3	4	5	6	7	8	9					
T ₀	108.5	107.0	105.0	102.0	98.9	95.4	91.4	87.4	82.4	77.4					
T ₁	110.9	109.4	107.6	105.4	103.1	100.5	97.8	94.1	90.0	85.9					
T ₂	115.8	114.3	112.5	110.4	108.0	105.5	102.7	99.1	95.5	91.8					
T3	117.6	116.1	114.4	112.3	109.9	107.4	104.6	101.2	97.7	94.2					
T4	120.3	118.8	117.1	115.0	112.6	109.1	105.6	102.8	98.5	94.1					
T5	134.1	132.6	130.8	128.7	126.3	123.8	120.9	117.7	114.4	111.1					
T6	125.3	124.3	122.9	120.9	118.5	113.0	108.9	106.0	101.5	97.0					
Mean	118.9	117.5	115.8	113.5	111.0	107.8	104.6	101.2	97.1	93.1					
S.Em±	0.87	0.86	0.84	0.83	0.81	0.79	0.76	0.74	0.71	0.68					
CD at 1%	3.65	3.61	3.55	3.48	3.41	3.31	3.22	3.11	2.99	2.87					
T ₀ : Control,	T ₁ : Polymer (@ 5 ml,	5 ml, T ₂ : T ₁ + thiram @ 3 g/kg, T ₃ : T ₁ + carboxin @ 2 g/kg, T ₄ : T ₁ + carbendazim @ 2 g/k												

T₅: T₁+ (carbendazim + mancozeb) @ 3 g/kg, T₆: T₁+ (thiram + carboxin) @ 3 g/kg of seed.

Table 6: Effect of seed treatment with different fungicides along with polymer on seedling vigour index-I during storage of soybean cv. JS 335

Tuesday on ta	Months of storage													
1 reatments	Initial	1	2	3	4	5	6	7	8	9				
T ₀	3285	3138	2981	2705	2332	2011	1765	1480	1160	814				
T_1	3503	3357	3206	2920	2506	2183	1913	1665	1343	924				
T ₂	3575	3433	3279	3025	2735	2464	2127	1842	1496	1019				
T ₃	3675	3523	3394	3095	2822	2603	2209	1922	1563	1093				
T_4	3877	3739	3611	3365	3121	2804	2358	2079	1731	1245				
T ₅	4349	4235	4093	3841	3589	3328	2885	2568	2136	1524				
T ₆	4176	3979	3803	3556	3319	3012	2546	2221	1810	1285				
Mean	3777	3629	3481	3215	2918	2629	2258	1968	1606	1129				
S.Em±	26.90	21.17	22.81	24.20	23.38	22.28	18.95	17.26	14.79	10.71				
CD at 1%	113	89	96	102	98	94	80	73	62	45				

To: Control, T₁: Polymer @ 5 ml, T₅: T₁+ (carbendazim + mancozeb) @ 3 g/kg,

T₃: T₁+ carboxin @ 2 g/kg, T₄: T₁+ carbendazim @ 2 g/kg, T₂: T₁+ thiram @ 3 g/kg, T₆: T_1 + (thiram + carboxin) @ 3 g/kg of seed.

T4: T1+ carbendazım @ 2 g/kg, @ 2 g/kg, $T_6: T_1+$ (thiram + carboxin) @ 3 g/kg of seed.

Table 7: Effect of seed treatment with different fungicides along with polymer on seedling vigour index-II during storage of soybean cv. JS 335

Tuesday	Months of storage												
reatments	Initial	1	2	3	4	5	6	7	8	9			
T ₀	9631	9462	9040	8628	8051	7448	6877	6272	5501	4803			
T_1	9957	9785	9413	9079	8428	7886	7406	6837	6147	5418			
T_2	10432	10220	9838	9542	8977	8310	7867	7253	6564	5883			
T3	10676	10423	10114	9739	9203	8670	8131	7528	6811	6063			
T_4	10998	10742	10389	9971	9540	8987	8248	7756	6964	6091			
T ₅	12659	12429	12046	11594	11127	10740	9965	9351	8512	7747			
T ₆	11702	11403	10949	10588	10163	9501	8773	8166	7179	6345			
Mean	10865	10638	10256	9877	9356	8792	8181	7595	6811	6050			
S.Em±	78.78	77.34	74.66	72.25	69.30	66.64	62.20	58.58	53.81	49.77			
CD at 1%	332	326	314	304	292	281	262	247	227	210			
T _{0:} Control,	T ₁ : Poly	mer @ 5 ml	. T ₂ :	T_1 + thiram	@ 3 g/kg,	T_3 : T_1 + carboxin @ 2 g/kg. T_4 : T_1 + carbendazim @ 2 g/kg.							

 T_0 : Control, T_1 : Polymer @ 5 ml, T_2 : T_1 + thiram @ 3 g/kg, T_3 : T_1 + carboxin @ 2 T_5 : T_1 + (carbendazim + mancozeb) @ 3 g/kg, T_6 : T_1 + (thiram + carboxin) @ 3 g/kg of seed.

Conclusion

In conclusion, the higher germination percentage, root length, shoot length, seedling vigour index, dry matter, were recorded in the seeds treated with carbendazim 25% + mancozeb 75% @ 3 g per kg of seed with polymer @ 5 ml per kg of seed (T₅) recorded significantly higher seed quality parameters as compared to control. The enhanced germination and quality parameters with treated seeds with fungicides and polymer coating is because of the combined favourable effects of these two chemicals. The fungicides protected the seed deterioration by reducing the fungal invasion. The effectiveness of fungicides and polymer coating may be due to the compatibility and synergetic effect, which reduced the growth of the pathogen and favoured germination and other parameters.

References

- 1. Abdul-baki AA, Anderson JD. Vigour determination in soybean by multiple criteria. Crop Sci. 1973; 13:630-633.
- 2. Anonymous. International Rules for Seed Testing, International Seed Testing. Seed Sci. & Tech. 2014; 13:299-355.
- 3. Ashwini C, Giri GK. Detection and transmission of seed borne mycoflora in green gram and effect of different fungicides. Int. J Adv. Res. 2014; 2(5):1182-1186.
- 4. Duan X, Burris JS. Film coating impairs leaching of germination inhibitors in sugar beet seeds. Crop Sci. 1997; 37:515-520.
- 5. Gairola KC, Nautiyal AR, Dwivedi AK. Effect of temperatures and germination media on seed germination of Jatropha curcas. Adv. Biores. 2011; 2(2):66-71.
- 6. Geetharani AS, Ponnuswamy, Srimathi P. Influence of polymer coating on nursery management in chillies. Seed Res. 2006; 34(2):212-214.
- Gupta IJ, Schmitthenner AE, Mc Donald MB. Effect of storage fungi on seed vigour of soybean. Seed Sci. Tech. 1993; 21:581-591.
- 8. Hunje RV, Kulkarni GN, Shashidhara SD, Vyakaranahal BS. Effect of insecticide and fungicide treatment on cowpea seed quality. Seed Res. 1990; 18:90-92.
- 9. Kunkur V, Hunje R, Biradar Patil NK, Vyakarnhal BS. Effect of seed coating with polymer, fungicide and insecticide on seed quality in cotton during storage. Karnataka J Agric. Sci. 2007; 20(1):137-139.
- 10. Larissa LP, Cladio B, Jefferson LSC. Storage of dry bean seeds coated with polymer and treated with fungicides. Pesqagropee Brass. 2004; 39(7):2-10.

- 11. Omvir Singh, Agarwal VK, Nene L. Influence of fungicidal seed treatment on the mycoflora of stored soybean. Indian. J Agric. Sci. 1973; 43(8):820-824.
- 12. Sajad S. The quality of seed forestry in Indonesia. Agriculture Institute Bogor, 1980, 205p.
- 13. Sindhan GS, Bose SA. Evaluation of fungicides against anthracnose of French bean caused by Colletotrichum lindemuthianum. Indian Phytopath. 1981; 34(3):325-329.
- 14. Struve TH, Hopper WT. The effect of polymer film coating on cotton seed imbibition, germination and emergence. Proceedings of Belt wide Cotton conference, Nashville, TN, USA. 1996; 2:1167-1170.
- Sundararaj N, Nagaraju S, Venkataramana S, Jaganatha MH. Design and analysis of field experiments. Univ. Agric. Sci. Hebbal, Bengalore, 1972.
- 16. Sundaresh HN, Ranganathan KJ, Janaradhan A, Vishwanatha SR. Chemical seed treatment against seed borne fungi in soybean. Curr Res. 1987; 16:110-111.
- 17. Taylor AG, Eckenrode CJ, Straub RW. Seed coating technologies and treatments for onion. Chall. Progr. Hort. Sci. 2001; 36(2):199-205.
- Vanangamudi K, Srimathi P, Natarajan N, Bhaskaran M. Current scenario of seed coating polymer. ICAR Short Course on Seed Hardening and Pelleting Technologies for Rainfed Garden Land Ecosystem, 2003, 80-100.
- 19. West SH, Loftin SK, Wahl M, Batich CD, Beatty CL. Polymers as moisture barriers to maintain seed quality. Crop Sci. 1985; 25:941-944.