Effect of thiamethoxam on average frame weight and strength of Apis mellifera L. exposed to thiamethoxam treated mustard crop

Gouri Shankar Giri, Pramod Mall and Renu Pandey

Abstract
Genus Apis is the most studied because of their fascinating and complex lifestyle, communication systems, role as keystone and the valuable hive products that they produce. Recently a sharp decline in population of Apis mellifera has been observed throughout the World. Among the various factors, the major one is the use of different classes of pesticides, neonicotinoids in particular. Thiamethoxam, a neonicotinoid, is widely used against sucking pest in various crops inluding mustard to which honey bees are attract largely. The present study tried to find out the possible effect of thiamethoxam on average frame weight and strength of Apis mellifera colony exposed to thiamethoxam treated mustard field. Detailed examination demonstrated that colonies exposed to the treated crop were unable maintain strength as well as average frame weight throughout the experimental period.

Keywords: honey bee, thiamethoxam, average frame weight, strength

Introduction
Honeybees play a crucial role in the pollination of agricultural crops. Bees are estimated to pollinate over 66 per cent of the world's 1,500 crop species. They also contribute directly or indirectly to 15–30 per cent of global food production. Less than eleven of the 20,000–30,000 bee species are used for agricultural purposes worldwide. Out of above species, the honeybee is used intensively to enhance the agricultural productivity in developed nations (Kremen et al., 2002).[1] The economic role of honeybees in pollination has been valued to be around 153 billion worldwide in the year 2005 (Gallai et al., 2009) [2] that makes 9.5 per cent of the total value of food production (Kremen et al., 2002).[1] Genus Apis is the most studied because of their fascinating and complex lifestyle, communication systems (Nieh, 1998; Nieh and Roubik, 1995)[3]. Role as keystone pollinators of native as well as wild plants, pollination of agricultural crops and the valuable hive products that they produce, such as honey, royal jelly, bee wax, bee pollen, propolis and even bee venom, are well established by several research findings. However, in recent years, honeybee colony declines have reached 10–30% in Europe, 30% in the United States and up to 85% in Middle East, but such declines are not apparent in South America, Africa and Australia (Kluser, 2010)[4]. Factors believed to contribute to the decline of managed honeybee populations include the introduction of parasitic mites, pathogens, monoculture that results in malnutrition, genetically modified crops, electromagnetic radiation, application of pesticides and many others (Morse and Flottum, 1997)[5]. Among them the most important cause is the use of various kind of pesticide on crops to which honeybees are attract largely. In order to feed the fast growing global population, chemical insecticides are vital to crop productivity in intensive farming systems where they save about one-fifth of the crop yield (Oerke and Dehne, 2004) [8]. Chemical insecticides used to suppress insect populations can affect non-target beneficial insects including pollinators. The yearly estimated cost of pollution losses due to pesticide exposure is $210 million USD (Pimental, 2005). Among different classes of chemical insecticide, the use of neonicotinoid insecticides has been specifically pointed out as a key factor that might contribute to a sharp decline of both managed and wild bee population (Goulson et al., 2013)[9].

Materials and Methods
The experiment was conducted at G. B. Pant University of Agriculture and Technology, Pantnagar (Uttarakhand). The observations were recorded during the peak flowering period i.e.

Correspondence
Gouri Shankar Giri
Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Accepted: 25-04-2018

© 2018 IJCS
IJCS 2018; 6(3): 3655-3657
ISSN: 2349-8528
ISSN: 2321-4902
from last week of February to last week of March, 2017. Semi field test involving cages having area of 40 m² were used. Small healthy queen-right colony per cage containing approximately 3000-5000 bees and at least three full frames containing all brood stages was used. The condition of the colonies such as average frame weight and strength in terms of number of frames covered with bee was assessed on the day before introduction into the cage and on day 7, 14, 21 and 28 after spraying of thiamethoxam.

Results and Discussion

Average frame weight (Kg)
The average frame weight recorded in colonies placed on treated and control field at seven days interval are embodied in table 1. One observation was recorded before application of thiamethoxam. The bee colonies placed in the field to be treated had the average frame weight of 1.11 kg while control colonies had average frame weight of 1.37 kg. Second observation was made seven days after the spraying of thiamethoxam on 4th march where average frame weight of 0.80 kg was noticed in colonies placed on treated fields and average frame weight of 1.46 kg was reported in control colonies. Third observation was recorded on 15 days of application on 11th march where average frame weight of 0.58 kg was noticed in colonies placed on treated fields and average frame weight of 1.54 kg was reported in control colonies. Fourth observation was recorded in 21 day of application and it was noticed that average frame weight was 3.33 numbers of frame covered with bees was noticed in control colonies. Fourth observation was recorded in 25th march where average frame weight of 0.51 kg was noticed in colonies placed on treated fields and average frame weight of 1.46 kg was noticed in colonies placed on treated fields and average frame weight of 0.80 kg was noticed in colonies placed on treated fields and average frame weight of 1.58 kg was noticed in control colonies.

<table>
<thead>
<tr>
<th>Date of observation</th>
<th>Average frame weight (kg)</th>
<th>Strength of the colony (number of frame covered with bees)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thiamethoxam</td>
<td>Control</td>
</tr>
<tr>
<td>Before exposure</td>
<td>24.02.2017</td>
<td>1.11 (1.05)</td>
</tr>
<tr>
<td></td>
<td>04.03.2017</td>
<td>0.80 (0.89)</td>
</tr>
<tr>
<td></td>
<td>11.03.2017</td>
<td>0.58 (0.76)</td>
</tr>
<tr>
<td></td>
<td>18.03.2017</td>
<td>0.51 (0.71)</td>
</tr>
<tr>
<td>After exposure</td>
<td>25.03.2017</td>
<td>0.51 (0.71)</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>4.11</td>
</tr>
</tbody>
</table>

*Data presented in parentheses are square root transformed values √N+0.

Strength of colony (Number of frame covered with bees)
The strength of the colonies in terms on number of frame covered with bees recorded in treatment and control colonies at seven days interval are embodied in table 1. One observation was recorded before application of thiamethoxam. The bee colonies placed in the field to be treated had 4.66 numbers of frame covered with bees while control colonies had strength of 3.33 frames. Second observation was made seven days after the spraying of chemicals on 4th march where 4.66 numbers of frame covered with bees was noticed in colonies placed on treated fields and 3.33 numbers of frame covered with bees was reported in control colonies. Third observation was recorded on 15 days of application on 11th march where strength of 2.33 frames was noticed in colonies placed on treated field and strength of 3.33 frames were noticed in control colonies. Fourth observation was recorded in 21 day of application and it was noticed that number of frame covered with bees was confused with decline trend in colonies placed on treated field.

References

