Effect of Calcium Chloride, Polyethylene Packaging and Storage Conditions on Chemical Parameters of Kokum (*Garcinia indica* choisy) Fruits

Sonali P Pawaskar, CD Pawar, AV Bhuwad, SS Tendulkar, RD Dhumal and MC Kasture

Abstract

The experiment was laid out in Factorial completely randomized design with four treatments of calcium chloride + polyethylene bag packaging with two storage conditions and replicated four times. The changes in physical parameters were studied at an interval of 5 days. Among the different interactions tried, at 5th day storage interaction T2S2 recorded minimum increase in T.S.S., reducing sugars, total sugars, pH, anthocyanin and minimum decrease in titratable acidity. Hence, among the different interactions under study, interaction T2S2 was found to be best, as fruit quality is concerned.

Keywords: Kokum, Calcium chloride, Polyethylene bag, Storage conditions, Chemical parameters

Introduction

Kokum (*Garcinia indica* Choisy) a tropical fruit is a native of India and has myriad of health benefits. It is an Indian spice used in many parts of the country for making several vegetarian and non-vegetarian ‘curry’ preparations, chutneys, pickles and the popular ‘Solkadhi’, ‘Amrutkokum’- a healthy soft drink, Amsul (dry rind used for garnishing), Agal i.e. salted juice etc. Kokum seed is a good source of fat called kokum butter that is used in confectionary pharmaceutical as well as cosmetic industry.

Kokum fruit contains hydroxyl citric acid (HCA) is a potential anti-obesity agent, B-complex vitamins, and minerals like potassium, manganese and magnesium, that help in controlling heart rate and blood pressure, offering protection against stroke and coronary heart diseases. This versatile fruit has been used to counter digestive problems such as indigestion, flatulence, acidity and constipation. Kokum fruit possess useful antioxidant, chelating, anti-cancer, antifungal, anti-inflammatory, antibacterial, cardio protective and anti-ulcer activities. Life-enhancing antioxidant found in kokum pericarp is called Xanthone. The anthocyanin pigments obtained from it are used as natural colouring agents for food preservation. Anon [1].

Processing sector is very vital for this crop as unlike other fruits, kokum cannot be consumed as fresh fruit. It’s utility start only after processing. Kokum fruits are perishable in nature and there are limitations for processing of these fruits. Hence, it is necessary to extend storage life of these fruits by giving postharvest treatments with packaging and using different storage conditions. This will maintain chemical composition of fruits for longer period, which will help in preparing quality processed products.

Material and Methods

The experiment, was laid out in Factorial completely randomized design with four treatments viz., T1- 2% calcium chloride, T2-2% calcium chloride + Polyethylene bag (200 gauge), T3- 2% calcium chloride + Polyethylene bag (200 gauge) with 2% perforation, T 4-Control and two storage conditions, viz., ambient temperature (S1) and cold storage (S2) and replicated four times. For each treatment combination 95 freshly harvested ripe kokum fruits were selected per replication. Selected fruits were thoroughly washed with clean tap water to remove dirt and dust particles adhered to the pericarp of the fruit and then treated with calcium chloride (2% for 10 minutes) and packed in polyethylene bag as per the treatments.
The treated fruits were stored at two different storage conditions viz. ambient storage (27-30 ºC) and cold storage (12 ± 2 ºC) and were analyzed for chemical composition during storage.

Total soluble solids (T.S.S.) were determined with the help of Hand refractometer (Erma Japan, 0 to 32°Brix) and value was corrected at 20 ºC with the help of temperature correction chart. The pH of the fruit juice was determined with the help of pH meter. (Model Systromics µ pH system 361). Standard solutions of pH 4.0 and 7.0 were used as reference to calibrate. The titratable acidity (%), reducing sugars (%), total sugars (%), anthocyanin (mg/100 g) were estimated as per the methods suggested by Ranganna [2].

The results were analyzed statistically as per the methods suggested by Panse and Sukhatme (1967). The above observations were recorded at 5 days interval up to end of shelf life i.e. 0, 5, 10, 15, 20 and 25 days.

Results and Discussion

In this experiment, from 5th day onwards only cold storage fruits were kept for further study as the fruits stored at ambient temperature loss the shelf life. From 15th day onwards due to spoilage the fruits of interaction T1S2 were discarded and T1S2, T2S2 and T3S2 were kept for further study. On 25th day observations of interaction T2S2 was taken as the other interactions showed end of shelf life.

The chemical composition of kokum fruits i.e. T.S.S., reducing sugar and total sugar content (Table 1 to 3) of kokum fruits increased throughout the storage period and it was found to be decreased at the end of shelf life, irrespective of chemical treatments at cold storage. Increase in T.S.S. reducing sugars and total sugars during cold storage might be associated with the transformation of pectic substances, starch, hemicellulose or other polysaccharides into soluble sugars and also due to dehydration of fruits and decrease was due to fermentation of sugar at the end of the shelf life due to spoilage of fruits. At ambient temperature T.S.S., reducing sugars and total sugars was found to decrease on 5th day of storage i.e. at the end of the shelf life. It is due to higher rate of microbial fermentation as high temperature favourable for microbial growth was available at ambient temperature. This might have converted sugars into alcohol. Results similar to these findings were obtained by Naik [3] in mango and Jadhav [4] in kokum and Mahajan et al. [5] in guava. Interaction T2S2 was found to be best with respect to T.S.S. and reducing sugars, as it showed minimum increase throughout the storage period. While in case of total sugars minimum increase was found in T3S2 followed by T1S2. The titratable acidity (Table 4) showed a continuous decline during storage. Maximum retention of acidity was found in cold storage as compared to ambient storage. The reduction in acidity during storage might be associated with the conversion of organic acids into sugars and their derivatives or their utilization in respiration. The slower decrease in acidity of kokum fruits at cold storage could be possibly due to slower degradation of organic acids due to low temperature and high humidity in cold storage. These results are in conformity to the observations reported by Joshi [6] and Raorane [7] in kokum fruits. The pH was increased throughout the storage period (Table 5). The continuous increase in pH during storage could be attributed to corresponding decrease in acidity (degradation of organic acids). Similar results were found by Jadhav [4] in kokum. Anthocyanin of fruits was increased upto certain period then afterward decreased slowly at end of shelf life, in case of cold storage (Table 6). Fouad et al. [8] and Bhandari [9] recorded similar results in blueberry and jamun fruits, respectively. At ambient condition it was found to be increased till the end of shelf life i.e. 5th day of storage. In case of the treatments, T2 showed minimum increase in pH and anthocyanin under both storage conditions. Among different interactions, maximum retention of acidity, pH and anthocyanin during storage period was recorded in T2S2.

From the present findings it can be concluded that calcium chloride treatments, polyethylene packaging and storage conditions helps to maintain the chemical composition of fruits for longer period. Considering chemical composition interaction T2S2 (2 % of calcium chloride + 200 gauge polyethylene bag and cold storage) was found to be best.

Table 1: Effect of calcium chloride treatments and polyethylene packaging on T.S.S. (°Brix) of kokum fruits during storage

<table>
<thead>
<tr>
<th>Treatments</th>
<th>0 days</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>20 days</th>
<th>25 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
</tr>
<tr>
<td>T1</td>
<td>11.25</td>
<td>11.65</td>
<td>11.45</td>
<td>10.45</td>
<td>(7.11)</td>
<td>11.88</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>11.63</td>
<td>11.43</td>
<td>11.53</td>
<td>10.43</td>
<td>(10.32)</td>
<td>11.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>11.55</td>
<td>11.65</td>
<td>11.60</td>
<td>11.30</td>
<td>(2.16)</td>
<td>11.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>11.54</td>
<td>11.57</td>
<td>11.56</td>
<td>10.85</td>
<td>(6.02)</td>
<td>11.84</td>
</tr>
<tr>
<td>S.Em + C. D. at 1%</td>
<td>0.173</td>
<td>0.122</td>
<td>0.245</td>
<td>0.173</td>
<td>0.122</td>
<td>0.245</td>
</tr>
<tr>
<td>S.Em + C. D. at 1%</td>
<td>0.583</td>
<td>0.413</td>
<td>0.285</td>
<td>3.263</td>
<td>3.263</td>
<td>3.263</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicates percent increase in T.S.S., however minus value indicates percent decrease.

T : Treatments
T1 : 2 % Calcium chloride
T2 : 2 % Calcium chloride + Polyethylene bag (200 gauge)
T3 : 2 % Calcium chloride + Polyethylene bag (200 gauge) with perforation (2 %)
T4 : Control
S : Storage conditions
S1 : Ambient temperature (27-300C)
S2 : Cold storage (12 + 10C)
T×S : Interactions (Treatment × Storage condition)
S : Non Significant
Table 2: Effect of calcium chloride treatments and polyethylene packaging on reducing sugars (%) of kokum fruits during storage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 days</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>20 days</th>
<th>25 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
</tr>
<tr>
<td>T1</td>
<td>4.98</td>
<td>4.74</td>
<td>4.86</td>
<td>4.49 (+9.82)</td>
<td>4.89 (3.09)</td>
<td>4.69 (-3.36)</td>
</tr>
<tr>
<td>T2</td>
<td>4.79</td>
<td>4.68</td>
<td>4.74</td>
<td>4.53 (+5.48)</td>
<td>4.79 (2.33)</td>
<td>4.66 (-1.58)</td>
</tr>
<tr>
<td>T3</td>
<td>4.63</td>
<td>4.98</td>
<td>4.80</td>
<td>4.40 (-4.94)</td>
<td>5.10 (2.38)</td>
<td>4.75 (-1.28)</td>
</tr>
<tr>
<td>T4</td>
<td>4.70</td>
<td>4.75</td>
<td>4.72</td>
<td>4.28 (-8.86)</td>
<td>4.89 (3.04)</td>
<td>4.59 (-2.91)</td>
</tr>
<tr>
<td>Mean</td>
<td>4.77</td>
<td>4.79</td>
<td>4.78</td>
<td>4.43 (-7.27)</td>
<td>4.92 (2.71)</td>
<td>4.67 (-2.28)</td>
</tr>
</tbody>
</table>

Table 3: Effect of calcium chloride treatments and polyethylene packaging on total sugars (%) of kokum fruits during storage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 days</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>20 days</th>
<th>25 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
</tr>
<tr>
<td>T1</td>
<td>5.78</td>
<td>5.77</td>
<td>5.78</td>
<td>5.51 (-4.67)</td>
<td>6.25 (8.36)</td>
<td>5.88 (1.85)</td>
</tr>
<tr>
<td>T2</td>
<td>5.76</td>
<td>5.81</td>
<td>5.79</td>
<td>5.5 (-4.51)</td>
<td>6.25 (7.49)</td>
<td>5.87 (1.49)</td>
</tr>
<tr>
<td>T3</td>
<td>5.81</td>
<td>5.67</td>
<td>5.74</td>
<td>5.53 (-4.82)</td>
<td>6.04 (6.52)</td>
<td>5.79 (0.85)</td>
</tr>
<tr>
<td>T4</td>
<td>5.71</td>
<td>5.89</td>
<td>5.80</td>
<td>5.44 (-4.73)</td>
<td>6.29 (6.79)</td>
<td>5.86 (1.03)</td>
</tr>
<tr>
<td>Mean</td>
<td>5.77</td>
<td>5.79</td>
<td>5.78</td>
<td>5.50 (-4.68)</td>
<td>6.21 (7.29)</td>
<td>5.85 (1.31)</td>
</tr>
</tbody>
</table>

Table 4: Effect of calcium chloride treatments and polyethylene packaging on titratable acidity (%) of kokum fruits during storage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 days</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>20 days</th>
<th>25 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
</tr>
<tr>
<td>T1</td>
<td>3.95</td>
<td>3.87</td>
<td>3.91</td>
<td>3.45 (-12.48)</td>
<td>3.62 (-6.46)</td>
<td>3.54 (-9.47)</td>
</tr>
<tr>
<td>T2</td>
<td>3.74</td>
<td>3.83</td>
<td>3.79</td>
<td>3.20 (-14.63)</td>
<td>3.61 (-5.81)</td>
<td>3.40 (-10.22)</td>
</tr>
<tr>
<td>T3</td>
<td>3.76</td>
<td>4.15</td>
<td>3.96</td>
<td>3.24 (-13.83)</td>
<td>3.88 (-6.51)</td>
<td>3.56 (-10.17)</td>
</tr>
<tr>
<td>T4</td>
<td>4.17</td>
<td>4.08</td>
<td>4.13</td>
<td>3.51 (-16.00)</td>
<td>3.82 (-6.55)</td>
<td>3.66 (-11.28)</td>
</tr>
<tr>
<td>Mean</td>
<td>3.91</td>
<td>3.98</td>
<td>3.94</td>
<td>3.35 (-14.23)</td>
<td>3.73 (-6.33)</td>
<td>3.54 (-10.28)</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicates percent increase in total sugars, however minus value indicates percent decrease.

T: Treatments
S: Storage conditions
T1 : 2% Calcium chloride S1 : Ambient temperature (27-300C)
T2 : 2% Calcium chloride + Polyethylene bag (200 gauge) S2 : Cold storage (12 + 10C)
T3 : 2% Calcium chloride + Polyethylene bag (200 gauge) with perforation (2%) T×S : Interactions (Treatment × Storage condition)
T4 : Control NS : Non-Significant
Figures in parenthesis indicates percent decrease in titratable acidity

T : Treatments
S : Storage conditions

T1 : 2 % Calcium chloride
S1 : Ambient temperature (27-300C)

T2 : 2 % Calcium chloride + Polyethylene bag (200 gauge)
S2 : Cold storage (12 + 10C)

T3 : 2 % Calcium chloride + Polyethylene bag (200 gauge) with perforation (2 %)

T×S : Interactions (Treatment × Storage condition)

T4 : Control
NS : Non-Significant

Table 5: Effect of calcium chloride treatments and polyethylene packaging on pH of kokum fruits during storage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 days</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>20 days</th>
<th>25 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
</tr>
<tr>
<td>T1</td>
<td>2.15</td>
<td>2.03</td>
<td>2.09</td>
<td>2.20 (2.33)</td>
<td>2.10 (3.45)</td>
<td>2.15 (2.89)</td>
</tr>
<tr>
<td>T2</td>
<td>2.13</td>
<td>2.10</td>
<td>2.11</td>
<td>2.13 (2.47)</td>
<td>2.13 (1.43)</td>
<td>2.15 (1.95)</td>
</tr>
<tr>
<td>T3</td>
<td>2.08</td>
<td>2.13</td>
<td>2.10</td>
<td>2.15 (3.37)</td>
<td>2.17 (1.76)</td>
<td>2.16 (2.57)</td>
</tr>
<tr>
<td>T4</td>
<td>2.14</td>
<td>2.08</td>
<td>2.11</td>
<td>2.18 (3.39)</td>
<td>2.14 (3.25)</td>
<td>2.18 (3.32)</td>
</tr>
<tr>
<td>Mean</td>
<td>2.12</td>
<td>2.08</td>
<td>2.10</td>
<td>2.18 (2.89)</td>
<td>2.14 (2.48)</td>
<td>2.16 (2.68)</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicate percent increase in pH.

T : Treatments
S : Storage conditions

T1 : 2 % Calcium chloride
S1 : Ambient temperature (27-300C)

T2 : 2 % Calcium chloride + Polyethylene bag (200 gauge)
S2 : Cold storage (12 + 10C)

T3 : 2 % Calcium chloride + Polyethylene bag (200 gauge) with perforation (2 %)

T×S : Interactions (Treatment × Storage condition)

T4 : Control
NS : Non-Significant

Table 6: Effect of calcium chloride treatments and polyethylene packaging on anthocyanin (mg/100g) of kokum fruits during storage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 days</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>20 days</th>
<th>25 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
<td>S1</td>
<td>S2</td>
<td>Mean</td>
</tr>
<tr>
<td>T1</td>
<td>2879.25</td>
<td>2915.00</td>
<td>2897.13</td>
<td>3081.88 (7.04)</td>
<td>3027.40 (3.86)</td>
<td>3054.64 (5.45)</td>
</tr>
<tr>
<td>T2</td>
<td>3157.00</td>
<td>3030.75</td>
<td>3093.88</td>
<td>3312.38 (4.92)</td>
<td>3107.63 (3.76)</td>
<td>3210.01 (3.73)</td>
</tr>
<tr>
<td>T3</td>
<td>2978.75</td>
<td>3138.25</td>
<td>3058.50</td>
<td>3180.00 (6.76)</td>
<td>3232.62 (3.01)</td>
<td>3206.31 (4.88)</td>
</tr>
<tr>
<td>T4</td>
<td>3039.50</td>
<td>3123.75</td>
<td>3081.63</td>
<td>3272.50 (7.67)</td>
<td>3242.50 (3.80)</td>
<td>3257.50 (5.73)</td>
</tr>
<tr>
<td>Mean</td>
<td>3013.63</td>
<td>3051.94</td>
<td>3032.78</td>
<td>3211.69 (6.60)</td>
<td>3152.54 (3.30)</td>
<td>3182.11 (4.95)</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicates percent increase in anthocyanin.

T : Treatments
S : Storage conditions

T1 : 2 % Calcium chloride
S1 : Ambient temperature (27-300C)

T2 : 2 % Calcium chloride + Polyethylene bag (200 gauge)
S2 : Cold storage (12 + 10C)

T3 : 2 % Calcium chloride + Polyethylene bag (200 gauge) with perforation (2 %)

T×S : Interactions (Treatment × Storage condition)

T4 : Control
NS : Non-Significant

References

5. Mahajan BVC, Ghuman BS, Bons HK. Effect of postharvest treatment of calcium chloride and gibberellic acid on storage behaviour and quality of guava fruits.

